cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210738 Triangle of coefficients of polynomials v(n,x) jointly generated with A210603; see the Formula section.

Original entry on oeis.org

1, 3, 2, 6, 9, 4, 11, 25, 23, 8, 19, 60, 81, 55, 16, 32, 130, 237, 233, 127, 32, 53, 266, 610, 798, 625, 287, 64, 87, 522, 1451, 2364, 2439, 1601, 639, 128, 142, 995, 3255, 6373, 8138, 6984, 3969, 1407, 256, 231, 1855, 6995, 16007, 24430, 25832
Offset: 1

Views

Author

Clark Kimberling, Mar 24 2012

Keywords

Comments

Row n starts with F(n+3)-2, where F=A000045 (Fibonacci
numbers), and ends with 2^(n-1). For a discussion and
guide to related arrays, see A208510.

Examples

			First five rows:
1
3....2
6....9....4
11...25...23...8
19...60...81...55...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x + 4x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210603 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210738 *)

Formula

u(n,x)=2x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.