This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210743 #5 Mar 30 2012 18:58:17 %S A210743 1,2,3,4,8,7,7,20,25,17,12,43,76,75,41,20,88,194,264,216,99,33,172, %T A210743 458,770,861,606,239,54,327,1016,2038,2811,2691,1667,577,88,608,2161, %U A210743 5012,8206,9689,8149,4517,1393,143,1112,4447,11699,22057,30830 %N A210743 Triangle of coefficients of polynomials u(n,x) jointly generated with A210744; see the Formula section. %C A210743 Row n starts with -1+F(n), where F=A000045 (Fibonacci numbers), and ends with A001333(n). For a discussion and guide to related arrays, see A208510. %F A210743 u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A210743 v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, %F A210743 where u(1,x)=1, v(1,x)=1. %e A210743 First five rows: %e A210743 1 %e A210743 2....3 %e A210743 4....8....7 %e A210743 7....20...25...17 %e A210743 12...43...76...75...41 %e A210743 First three polynomials u(n,x): 1, 2+ 3x, 4 + 8x + 7x^2. %t A210743 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210743 u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A210743 v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A210743 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210743 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210743 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210743 TableForm[cu] %t A210743 Flatten[%] (* A210743 *) %t A210743 Table[Expand[v[n, x]], {n, 1, z}] %t A210743 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210743 TableForm[cv] %t A210743 Flatten[%] (* A210744 *) %Y A210743 Cf. A210744, A208510. %K A210743 nonn,tabl %O A210743 1,2 %A A210743 _Clark Kimberling_, Mar 24 2012