A210747 Triangle of coefficients of polynomials u(n,x) jointly generated with A210748; see the Formula section.
1, 2, 3, 4, 9, 8, 7, 24, 33, 21, 12, 54, 109, 111, 55, 20, 114, 297, 435, 355, 144, 33, 228, 736, 1383, 1606, 1098, 377, 54, 441, 1697, 3912, 5813, 5625, 3316, 987, 88, 831, 3723, 10158, 18419, 22779, 18962, 9837, 2584, 143, 1536, 7859, 24798
Offset: 1
Examples
First five rows: 1 2....3 4....9....8 7....24...33....21 12...54...109...111...55 First three polynomials u(n,x): 1, 2+ 3x, 4 + 9x + 8x^2.
Crossrefs
Cf. A208510.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210747 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210748 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A002450 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A002450 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077925 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 *)
Formula
u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments