This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210749 #5 Mar 30 2012 18:58:17 %S A210749 1,3,1,6,7,1,11,21,15,1,19,53,60,31,1,32,118,191,155,63,1,53,246,514, %T A210749 593,378,127,1,87,489,1261,1863,1683,889,255,1,142,941,2890,5233,6029, %U A210749 4501,2040,511,1,231,1767,6311,13527,19026,18068,11543,4599 %N A210749 Triangle of coefficients of polynomials u(n,x) jointly generated with A210750; see the Formula section. %C A210749 Row n starts with -2+F(n+3) and ends with 1, where F=A000045 (Fibonacci numbers). %C A210749 For a discussion and guide to related arrays, see A208510. %F A210749 u(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, %F A210749 v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, %F A210749 where u(1,x)=1, v(1,x)=1. %e A210749 First five rows: %e A210749 1 %e A210749 3....1 %e A210749 6....7....1 %e A210749 11...21...15...1 %e A210749 19...53...60...31...1 %e A210749 First three polynomials u(n,x): 1, 3+ x, 6 + 7x + x^2. %t A210749 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210749 u[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A210749 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A210749 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210749 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210749 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210749 TableForm[cu] %t A210749 Flatten[%] (* A210749 *) %t A210749 Table[Expand[v[n, x]], {n, 1, z}] %t A210749 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210749 TableForm[cv] %t A210749 Flatten[%] (* A210750 *) %Y A210749 Cf. A210750, A208510. %K A210749 nonn,tabl %O A210749 1,2 %A A210749 _Clark Kimberling_, Mar 25 2012