This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210750 #5 Mar 30 2012 18:58:17 %S A210750 1,2,3,4,8,7,7,21,24,15,12,46,78,64,31,20,96,205,247,160,63,33,190, %T A210750 501,756,712,384,127,54,365,1140,2109,2483,1929,896,255,88,684,2480, %U A210750 5404,7764,7538,5002,2048,511,143,1259,5199,13083,22070,26058 %N A210750 Triangle of coefficients of polynomials v(n,x) jointly generated with A210749; see the Formula section. %C A210750 Row n starts with -1+F(n+2) and ends with -1+2^n, where F=A000045 (Fibonacci numbers). %C A210750 For a discussion and guide to related arrays, see A208510. %F A210750 u(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, %F A210750 v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, %F A210750 where u(1,x)=1, v(1,x)=1. %e A210750 First five rows: %e A210750 1 %e A210750 2....3 %e A210750 4....8....7 %e A210750 7....21...24...15 %e A210750 12...46...78...64...31 %e A210750 First three polynomials v(n,x): 1, 2 + 3x, 4 + 8x +7x^2 %t A210750 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210750 u[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A210750 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A210750 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210750 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210750 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210750 TableForm[cu] %t A210750 Flatten[%] (* A210749 *) %t A210750 Table[Expand[v[n, x]], {n, 1, z}] %t A210750 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210750 TableForm[cv] %t A210750 Flatten[%] (* A210750 *) %Y A210750 Cf. A210749, A208510. %K A210750 nonn,tabl %O A210750 1,2 %A A210750 _Clark Kimberling_, Mar 25 2012