This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210763 #13 Jun 01 2012 19:31:32 %S A210763 1,1,1,2,1,1,2,1,1,3,1,1,2,2,2,3,1,1,2,5,1,1,2,2,2,3,2,2,3,5,1,1,1,2, %T A210763 7,1,1,2,2,2,3,3,3,3,5,3,3,4,4,7,1,1,1,2,4,11,1,1,2,2,2,3,3,3,3,5,4,4, %U A210763 5,4,7,3,3,3,5,6,11,1,1,1,1,2,4,15 %N A210763 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which lists the sums of the columns of the shell model of partitions with n shells. %e A210763 -------------------------------------------------------- %e A210763 Illustration of first five A210952 %e A210763 slices of the tetrahedron Row sum %e A210763 -------------------------------------------------------- %e A210763 . 1, 1 %e A210763 . 1, 1 %e A210763 . 1, 2, 3 %e A210763 . 1, 1 %e A210763 . 1, 2, 3 %e A210763 . 1, 1, 3, 5 %e A210763 . 1, 1 %e A210763 . 1, 2, 3 %e A210763 . 2, 2, 3, 7 %e A210763 . 1, 1, 2, 5, 9 %e A210763 . 1, 1 %e A210763 . 1, 2, 3 %e A210763 . 2, 2, 3, 7 %e A210763 . 2, 2, 3, 5, 12 %e A210763 . 1, 1, 1, 2, 7, 12 %e A210763 -------------------------------------------------------- %e A210763 . 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, %e A210763 Each column sum in the slice j is equal to A000041(j). %e A210763 . %e A210763 Also this sequence can be written as a triangle read by rows in which each row is a flattened triangle. The sequence begins: %e A210763 1; %e A210763 1,1,2; %e A210763 1,1,2,1,1,3; %e A210763 1,1,2,2,2,3,1,1,2,5; %e A210763 1,1,2,2,2,3,2,2,3,5,1,1,1,2,7; %e A210763 1,1,2,2,2,3,3,3,3,5,3,3,4,4,7,1,1,1,2,4,11; %e A210763 1,1,2,2,2,3,3,3,3,5,4,4,5,4,7,3,3,3,5,6,11,1,1,1,1,2,4,15; %e A210763 Row n has length A000217(n). Row sums give A066186. Right border gives A000041(n), n >= 1. %Y A210763 Cf. A135010, A138121, A209655, A209918, A210952, A210960, A210961. %K A210763 nonn,tabf %O A210763 1,4 %A A210763 _Omar E. Pol_, Apr 24 2012