cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210952 Triangle read by rows: T(n,k) = sum of all parts of the k-th column of the partitions of n but with the partitions aligned to the right margin.

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 7, 9, 1, 3, 7, 12, 12, 1, 3, 7, 14, 21, 20, 1, 3, 7, 14, 24, 31, 25, 1, 3, 7, 14, 26, 40, 47, 38, 1, 3, 7, 14, 26, 43, 61, 66, 49, 1, 3, 7, 14, 26, 45, 70, 92, 93, 69, 1, 3, 7, 14, 26, 45, 73, 106, 130, 124, 87, 1, 3, 7, 14
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Examples

			For n = 6 the illustration shows the partitions of 6 aligned to the right margin and below the sums of the columns:
.
.                      6
.                  3 + 3
.                  4 + 2
.              2 + 2 + 2
.                  5 + 1
.              3 + 2 + 1
.              4 + 1 + 1
.          2 + 2 + 1 + 1
.          3 + 1 + 1 + 1
.      2 + 1 + 1 + 1 + 1
.  1 + 1 + 1 + 1 + 1 + 1
-------------------------
.  1,  3,  7, 14, 21, 20
.
So row 6 lists 1, 3, 7, 14, 21, 20.
Triangle begins:
1;
1, 3;
1, 3, 5;
1, 3, 7,  9;
1, 3, 7, 12, 12;
1, 3, 7, 14, 21, 20;
1, 3, 7, 14, 24, 31, 25;
1, 3, 7, 14, 26, 40, 47, 38;
1, 3, 7, 14, 26, 43, 61, 66, 49;
1, 3, 7, 14, 26, 45, 70, 92, 93, 69:
		

Crossrefs

Mirror of triangle A206283. Rows sums give A066186. Rows converge to A014153. Right border gives A046746, >= 1.

Formula

T(n,k) = Sum_{j=1..n} A210953(j,k). - Omar E. Pol, May 26 2012

A210960 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which list the number of parts in the columns of the shell model of partitions with n shells mentioned in A210970.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Examples

			--------------------------------------------------------
Illustration of first five
slices of the tetrahedron                       Row sum
--------------------------------------------------------
. 1,                                               1
.    1,                                            1
.    1, 1,                                         2
.          1,                                      1
.          1, 1,                                   2
.          1, 1, 1,                                3
.                   1,                             1
.                   1, 1,                          2
.                   2, 1, 1,                       4
.                   1, 2, 1, 1,                    5
.                               1,                 1
.                               1, 1,              2
.                               2, 1, 1,           4
.                               2, 2, 1, 1,        6
.                               1, 2, 2, 1, 1,     7
--------------------------------------------------------
. 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1,
.
It appears that column sums give A058399.
Also, written as a triangle read by rows in which each row is a flattened triangle, begins:
1;
1,1,1,
1,1,1,1,1,1;
1,1,1,2,1,1,1,2,1,1;
1,1,1,2,1,1,2,2,1,1,1,2,2,1,1;
1,1,1,2,1,1,3,2,1,1,3,3,2,1,1,1,3,3,2,1,1;
1,1,1,2,1,1,3,2,1,1,4,3,2,1,1,3,4,3,2,1,1,1,3,4,3,2,1,1;
In which row sums give A006128.
		

Crossrefs

Showing 1-2 of 2 results.