cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210765 Triangle read by rows in which row n lists the number of partitions of n together with n-1 ones.

This page as a plain text file.
%I A210765 #33 Oct 02 2013 15:58:41
%S A210765 1,2,1,3,1,1,5,1,1,1,7,1,1,1,1,11,1,1,1,1,1,15,1,1,1,1,1,1,22,1,1,1,1,
%T A210765 1,1,1,30,1,1,1,1,1,1,1,1,42,1,1,1,1,1,1,1,1,1,56,1,1,1,1,1,1,1,1,1,1,
%U A210765 77,1,1,1,1,1,1,1,1,1,1,1,101,1,1,1
%N A210765 Triangle read by rows in which row n lists the number of partitions of n together with n-1 ones.
%C A210765 The sum of row n is S_n = n - 1 + A000041(n) = A133041(n) - 1.
%C A210765 Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k) is also the number of k-th parts of all partitions of n in the k-th column of rectangle.
%e A210765 Triangle begins:
%e A210765 1;
%e A210765 2,  1;
%e A210765 3,  1, 1;
%e A210765 5,  1, 1, 1;
%e A210765 7,  1, 1, 1, 1;
%e A210765 11, 1, 1, 1, 1, 1;
%e A210765 15, 1, 1, 1, 1, 1, 1;
%e A210765 22, 1, 1, 1, 1, 1, 1, 1;
%e A210765 30, 1, 1, 1, 1, 1, 1, 1, 1;
%e A210765 42, 1, 1, 1, 1, 1, 1, 1, 1, 1;
%Y A210765 Main diagonal of A209655 and of A209918.
%Y A210765 Cf. A000041, A008284, A058399, A133041, A135010, A141285, A209656, A207380.
%K A210765 nonn,tabl,easy
%O A210765 1,2
%A A210765 _Omar E. Pol_, Mar 26 2012