This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210770 #23 Jun 19 2021 02:36:27 %S A210770 1,2,5,3,7,4,10,6,14,8,17,9,20,11,23,12,25,13,28,15,31,16,34,18,37,19, %T A210770 40,21,43,22,46,24,50,26,53,27,56,29,59,30,62,32,65,33,68,35,71,36,74, %U A210770 38,77,39,80,41,83,42,86,44,89,45,92,47,95,48,97,49,100 %N A210770 a(1) = 1, a(2) = 2; for n > 1, a(2*n+2) = smallest number not yet seen, a(2*n+1) = a(2*n) + a(2*n+2). %C A210770 Permutation of natural numbers with inverse A210771. %C A210770 From _Jeffrey Shallit_, Jun 18 2021: (Start) %C A210770 This sequence is "2-sychronized"; there is a 23-state finite automaton that recognizes the base-2 representations of n and a(n), in parallel. %C A210770 It obeys the identities %C A210770 a(4n+3) = a(2n+1) - a(4n) + 2 a(4n+2) %C A210770 a(8n) = 2a(4n) %C A210770 a(8n+1) = a(2n+1) + 3a(4n) %C A210770 a(8n+2) = a(2n+1) + 2 a(4n) - a(4n+1) + a(4n+2) %C A210770 a(8n+4) = a(2n+1) + a(4n+2) %C A210770 a(8n+5) = 3a(2n+1) - a(4n) +2a(4n+2) %C A210770 a(8n+6) = 2a(2n+1) - a(4n) + a(4n+2). (End) %H A210770 Reinhard Zumkeller, <a href="/A210770/b210770.txt">Table of n, a(n) for n = 1..10000</a> %H A210770 <a href="/index/Per#IntegerPermutation"> Index entries for sequences that are permutations of the natural numbers</a> %F A210770 a(2*n-1) = A022441(n-1); a(2*n) = A055562(n-1). %o A210770 (Haskell) %o A210770 import Data.List (delete) %o A210770 a210770 n = a210770_list !! (n-1) %o A210770 a210770_list = 1 : 2 : f 1 2 [3..] where %o A210770 f u v (w:ws) = u' : w : f u' w (delete u' ws) where u' = v + w %o A210770 (Python) %o A210770 def aupton(terms): %o A210770 alst, seen = [1, 2], {1, 2} %o A210770 for n in range(2, terms, 2): %o A210770 anp1 = alst[-1] + 1 %o A210770 while anp1 in seen: anp1 += 1 %o A210770 an = alst[n-1] + anp1 %o A210770 alst, seen = alst + [an, anp1], seen | {an, anp1} %o A210770 return alst[:terms] %o A210770 print(aupton(67)) # _Michael S. Branicky_, Jun 18 2021 %Y A210770 Cf. A064736. %K A210770 nonn %O A210770 1,2 %A A210770 _Reinhard Zumkeller_, Mar 25 2012 %E A210770 Definition corrected by _Jeffrey Shallit_, Jun 18 2021