This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210775 #9 Jun 13 2015 00:54:12 %S A210775 1,2,4,10,36,202,1828,27337,664665,23693265,1092226081,58686573121, %T A210775 3431048928385,209706732148993,13113096655221249,829504773400454145, %U A210775 52778852611947546625,3367976225848670392321,215235141069830389702657,13764966441742878856593409 %N A210775 Number of partitions of 2^n into powers of 2 less than or equal to 64. %H A210775 Alois P. Heinz, <a href="/A210775/b210775.txt">Table of n, a(n) for n = 0..175</a> %H A210775 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (127, -5334, 94488, -755904, 2731008, -4161536, 2097152). %F A210775 G.f.: -(7864320*x^12 -12132352*x^11 +4458752*x^10 -24624*x^9 +211146*x^8 +332009*x^7 +946454*x^6 -1548182*x^5 +587030*x^4 -84318*x^3 +5084*x^2 -125*x+1) / Product_{j=0..6} (2^j*x-1). %F A210775 a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..5} (1-x^(2^j)) for n>0. %p A210775 a:= n-> `if`(n<7, [1, 2, 4, 10, 36, 202, 1828][n+1], (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [2097152, -4161536, 2731008, -755904, 94488, -5334, 127][j], 0)))^(n-6). <<1828, 27337, 664665, 23693265, 1092226081, 58686573121, 3431048928385>>)[1,1]): seq(a(n), n=0..20); %Y A210775 Column k=6 of A152977. %K A210775 nonn,easy %O A210775 0,2 %A A210775 _Alois P. Heinz_, Mar 26 2012