This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210789 #21 Jan 27 2020 01:34:20 %S A210789 1,1,1,1,2,2,1,3,4,3,1,4,8,8,5,1,5,12,18,15,8,1,6,18,32,39,28,13,1,7, %T A210789 24,53,77,80,51,21,1,8,32,80,142,176,160,92,34,1,9,40,116,234,352,384, %U A210789 312,164,55,1,10,50,160,370,632,830,812,598,290,89,1,11,60,215 %N A210789 Triangle of coefficients of polynomials u(n,x) jointly generated with A210790; see the Formula section. %C A210789 Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers). %C A210789 Column 2: 1,2,3,4,5,6,7,8,... %C A210789 Row sums: A006138. %C A210789 Alternating row sums: signed Fibonacci numbers. %C A210789 For a discussion and guide to related arrays, see A208510. %C A210789 Subtriangle of the triangle given by (1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 28 2012 %F A210789 u(n,x) = u(n-1,x) + x*v(n-1,x), %F A210789 v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x), %F A210789 where u(1,x)=1, v(1,x)=1. %F A210789 From _Philippe Deléham_, Mar 28 2012: (Start) %F A210789 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A210789 G.f.: (1+x-y*x-y*x^2-y^2*x^2)/(1-y*x-y*x^2-x^2-y^2*x^2). %F A210789 T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A210789 First five rows: %e A210789 1; %e A210789 1, 1; %e A210789 1, 2, 2; %e A210789 1, 3, 4, 3; %e A210789 1, 4, 8, 8, 5; %e A210789 First three polynomials u(n,x): %e A210789 1 %e A210789 1 + x %e A210789 1 + 2x + 2x^2. %e A210789 From _Philippe Deléham_, Mar 28 2012: (Start) %e A210789 (1, 0, 0, -1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins: %e A210789 1; %e A210789 1, 0; %e A210789 1, 1, 0; %e A210789 1, 2, 2, 0; %e A210789 1, 3, 4, 3, 0; %e A210789 1, 4, 8, 8, 5, 0; (End) %t A210789 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210789 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210789 d[x_] := h + x; e[x_] := p + x; %t A210789 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210789 j = 0; c = 0; h = 2; p = -1; f = 0; %t A210789 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210789 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210789 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210789 TableForm[cu] %t A210789 Flatten[%] (* A210789 *) %t A210789 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210789 TableForm[cv] %t A210789 Flatten[%] (* A210790 *) %t A210789 Table[u[n, x] /. x -> 1, {n, 1, z}] (* A006138 *) %t A210789 Table[v[n, x] /. x -> 1, {n, 1, z}] (* A105476 *) %t A210789 Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *) %t A210789 Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *) %Y A210789 Cf. A210790, A208510. %K A210789 nonn,tabl %O A210789 1,5 %A A210789 _Clark Kimberling_, Mar 26 2012