A210793 Triangle of coefficients of polynomials u(n,x) jointly generated with A210794; see the Formula section.
1, 2, 1, 3, 4, 2, 6, 10, 8, 3, 9, 24, 27, 16, 5, 18, 51, 74, 62, 30, 8, 27, 108, 189, 200, 136, 56, 13, 54, 216, 450, 574, 488, 282, 102, 21, 81, 432, 1026, 1536, 1571, 1128, 569, 184, 34, 162, 837, 2268, 3864, 4598, 3967, 2486, 1118, 328, 55, 243, 1620
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 4, 2; 6, 10, 8, 3; 9, 24, 27, 16, 5; First three polynomials u(n,x): 1 2 + x 3 + 4x + 2x^2. From _Philippe Deléham_, Mar 29 2012: (Start) (1, 1, -1, -1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 3, 4, 2, 0; 6, 10, 8, 3, 0; 9, 24, 27, 16, 5, 0; 18, 51, 74, 62, 30, 8, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 1; c = 0; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210793 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210794 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000244 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000244 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000012 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 29 2012: (Start)
As DELTA(triangle T(n,k) with 0 <= k <= n:
G.f.: (1 + x - y*x^2 - 2*y*x^2 - y^2*x^2)/(1 - y*x - 3*x^2 - 2*y*x^2 - y^2*x^2).
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k <= n. (End)
Comments