A210794 Triangle of coefficients of polynomials v(n,x) jointly generated with A210793; see the Formula section.
1, 1, 2, 3, 3, 3, 3, 11, 8, 5, 9, 18, 29, 17, 8, 9, 48, 67, 71, 35, 13, 27, 81, 180, 194, 158, 68, 21, 27, 189, 387, 575, 508, 338, 129, 34, 81, 324, 918, 1410, 1617, 1222, 695, 239, 55, 81, 702, 1890, 3606, 4471, 4222, 2793, 1393, 436, 89, 243, 1215
Offset: 1
Examples
First five rows: 1 1...2 3...3....3 3...11...8....5 9...18...29...17...8 First three polynomials v(n,x): 1, 1 + 2x, 3 + 3x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 1; c = 0; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210793 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210794 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000244 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000244 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000012 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 29 2012
Comments