This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210795 #5 Mar 30 2012 18:58:17 %S A210795 1,2,1,3,2,2,4,5,5,3,5,8,12,9,5,6,13,22,25,17,8,7,18,38,51,51,31,13,8, %T A210795 25,59,98,115,101,56,21,9,32,88,166,238,248,196,100,34,10,41,124,270, %U A210795 438,552,520,374,177,55,11,50,170,410,762,1090,1234,1064,704 %N A210795 Triangle of coefficients of polynomials u(n,x) jointly generated with A210796; see the Formula section. %C A210795 Row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers). %C A210795 Column 2: A000982 %C A210795 Column 3: A026035 %C A210795 For a discussion and guide to related arrays, see A208510. %F A210795 u(n,x)=u(n-1,x)+x*v(n-1,x)+1, %F A210795 v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x), %F A210795 where u(1,x)=1, v(1,x)=1. %e A210795 First five rows: %e A210795 1 %e A210795 2...1 %e A210795 3...2...2 %e A210795 4...5...5....3 %e A210795 5...8...12...9...5 %e A210795 First three polynomials u(n,x): 1, 2 + x, 3 + 2x + 2x^2. %t A210795 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210795 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210795 d[x_] := h + x; e[x_] := p + x; %t A210795 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210795 j = 0; c = 1; h = 2; p = -1; f = 0; %t A210795 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210795 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210795 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210795 TableForm[cu] %t A210795 Flatten[%] (* A210795 *) %t A210795 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210795 TableForm[cv] %t A210795 Flatten[%] (* A210796 *) %Y A210795 Cf. A210796, A208510. %K A210795 nonn,tabl %O A210795 1,2 %A A210795 _Clark Kimberling_, Mar 26 2012