This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210796 #5 Mar 30 2012 18:58:17 %S A210796 1,1,2,3,3,3,3,7,6,5,5,10,16,12,8,5,16,26,34,23,13,7,21,47,64,70,43, %T A210796 21,7,29,68,123,147,140,79,34,9,36,104,200,304,324,274,143,55,9,46, %U A210796 140,324,538,714,690,527,256,89,11,55,195,480,932,1366,1616,1431 %N A210796 Triangle of coefficients of polynomials v(n,x) jointly generated with A210795; see the Formula section. %C A210796 Row n starts with A109613(n) and ends with F(n+1), where F=A000045 (Fibonacci numbers). %C A210796 Column 2: A114113 %C A210796 For a discussion and guide to related arrays, see A208510. %F A210796 u(n,x)=u(n-1,x)+x*v(n-1,x)+1, %F A210796 v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x), %F A210796 where u(1,x)=1, v(1,x)=1. %e A210796 First five rows: %e A210796 1 %e A210796 1...2 %e A210796 3...3....3 %e A210796 3...7....6....5 %e A210796 5...10...16...12...8 %e A210796 First three polynomials v(n,x): 1, 1 + 2x, 3 + 3x + 3x^2 %t A210796 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210796 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210796 d[x_] := h + x; e[x_] := p + x; %t A210796 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210796 j = 0; c = 1; h = 2; p = -1; f = 0; %t A210796 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210796 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210796 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210796 TableForm[cu] %t A210796 Flatten[%] (* A210795 *) %t A210796 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210796 TableForm[cv] %t A210796 Flatten[%] (* A210796 *) %Y A210796 Cf. A210795, A208510. %K A210796 nonn,tabl %O A210796 1,3 %A A210796 _Clark Kimberling_, Mar 26 2012