This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210797 #5 Mar 30 2012 18:58:17 %S A210797 1,1,1,1,3,2,1,4,5,3,1,6,10,10,5,1,7,16,22,18,8,1,9,24,42,47,33,13,1, %T A210797 10,33,69,98,95,59,21,1,12,44,108,182,220,188,105,34,1,13,56,156,308, %U A210797 444,472,363,185,55,1,15,70,220,490,818,1034,985,690,324,89,1 %N A210797 Triangle of coefficients of polynomials u(n,x) jointly generated with A210798; see the Formula section. %C A210797 Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers). %C A210797 Column 2: A032766 %C A210797 Column 3: A001859 %C A210797 Row sums: A099232 %C A210797 Alternating row sums: A008346 %C A210797 For a discussion and guide to related arrays, see A208510. %F A210797 u(n,x)=u(n-1,x)+x*v(n-1,x), %F A210797 v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1, %F A210797 where u(1,x)=1, v(1,x)=1. %e A210797 First five rows: %e A210797 1 %e A210797 1...1 %e A210797 1...3...2 %e A210797 1...4...5....3 %e A210797 1...6...10...10...5 %e A210797 First three polynomials u(n,x): 1, 1 + x, 1 + 3x + 2x^2. %t A210797 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210797 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210797 d[x_] := h + x; e[x_] := p + x; %t A210797 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210797 j = 0; c = 0; h = 2; p = -1; f = 1; %t A210797 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210797 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210797 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210797 TableForm[cu] %t A210797 Flatten[%] (* A210797 *) %t A210797 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210797 TableForm[cv] %t A210797 Flatten[%] (* A210798 *) %t A210797 Table[u[n, x] /. x -> 1, {n, 1, z}] (* A099232 *) %t A210797 Table[v[n, x] /. x -> 1, {n, 1, z}] (* A006130 *) %t A210797 Table[u[n, x] /. x -> -1, {n, 1, z}] (* A008346 *) %t A210797 Table[v[n, x] /. x -> -1, {n, 1, z}] (* A039834 *) %Y A210797 Cf. A210798, A208510. %K A210797 nonn,tabl %O A210797 1,5 %A A210797 _Clark Kimberling_, Mar 26 2012