This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210799 #8 Mar 31 2012 15:21:00 %S A210799 1,3,1,5,4,2,11,13,9,3,17,32,32,17,5,35,77,96,72,32,8,53,164,254,243, %T A210799 153,59,13,107,353,641,739,579,313,107,21,161,704,1496,2042,1938,1305, %U A210799 623,192,34,323,1433,3440,5348,5898,4774,2831,1213,341,55,485 %N A210799 Triangle of coefficients of polynomials u(n,x) jointly generated with A210800; see the Formula section. %C A210799 Row n starts with A060647(n) and ends with F(n), where F=A000045 (Fibonacci numbers). %C A210799 For a discussion and guide to related arrays, see A208510. %F A210799 u(n,x)=u(n-1,x)+(x+1)*v(n-1,x), %F A210799 v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x), %F A210799 where u(1,x)=1, v(1,x)=1. %F A210799 T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2) + a(k) with a(0) = 2, a(1) = -1, a(k) = 0 if k>1, T(1,0) = T(2,1) = 1, T(2,0) = 3 and T(n,k) = 0 if k<0 or if k>=n. %e A210799 First five rows: %e A210799 1 %e A210799 3....1 %e A210799 5....4....2 %e A210799 11...13...9....3 %e A210799 17...32...32...17...5 %e A210799 First three polynomials u(n,x): 1, 3 + x, 5 + 4x + 2x^2. %t A210799 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210799 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210799 d[x_] := h + x; e[x_] := p + x; %t A210799 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210799 j = 1; c = 1; h = 2; p = -1; f = 0; %t A210799 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210799 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210799 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210799 TableForm[cu] %t A210799 Flatten[%] (* A210799 *) %t A210799 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210799 TableForm[cv] %t A210799 Flatten[%] (* A210800 *) %Y A210799 Cf. A210800, A208510. %K A210799 nonn,tabl %O A210799 1,2 %A A210799 _Clark Kimberling_, Mar 27 2012