A210800 Triangle of coefficients of polynomials v(n,x) jointly generated with A210799; see the Formula section.
1, 1, 2, 5, 4, 3, 5, 14, 9, 5, 17, 28, 36, 19, 8, 17, 70, 88, 83, 38, 13, 53, 136, 251, 245, 181, 73, 21, 53, 298, 557, 746, 613, 379, 137, 34, 161, 568, 1376, 1930, 2030, 1439, 769, 252, 55, 161, 1162, 2888, 5026, 5818, 5139, 3221, 1524, 457, 89, 485
Offset: 1
Examples
First five rows: 1 1....2 5....4....3 5....14...9....5 17...28...36...19...8 First three polynomials v(n,x): 1, 1 + 2x, 5 + 4x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 1; c = 1; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210799 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210800 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2) + a(k) with a(0) = 2, a(1) = 1, a(k) = 0 if k>1, T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k >n. - Philippe Deléham, Mar 31 2012
Comments