This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210802 #5 Mar 30 2012 18:58:17 %S A210802 1,2,2,5,5,3,8,16,11,5,17,34,40,22,8,26,82,107,93,43,13,53,163,287, %T A210802 287,201,81,21,80,352,674,862,709,419,150,34,161,676,1592,2272,2326, %U A210802 1641,845,273,55,242,1378,3482,5878,6797,5863,3638,1666,491,89,485 %N A210802 Triangle of coefficients of polynomials v(n,x) jointly generated with A210801; see the Formula section. %C A210802 Row n ends with F(n+1), where F=A000045 (Fibonacci numbers). %C A210802 Row sums: A003462 %C A210802 Alternating row sums: A077898 %C A210802 For a discussion and guide to related arrays, see A208510. %F A210802 u(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1, %F A210802 v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1, %F A210802 where u(1,x)=1, v(1,x)=1. %e A210802 First five rows: %e A210802 1 %e A210802 2....2 %e A210802 5....5....3 %e A210802 8....16...11...5 %e A210802 17...34...40...22...8 %e A210802 First three polynomials v(n,x): 1, 2 + 2x, 5 + 5x + 3x^2 %t A210802 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210802 u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; %t A210802 d[x_] := h + x; e[x_] := p + x; %t A210802 v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; %t A210802 j = 1; c = 1; h = 2; p = -1; f = 1; %t A210802 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210802 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210802 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210802 TableForm[cu] %t A210802 Flatten[%] (* A210801 *) %t A210802 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210802 TableForm[cv] %t A210802 Flatten[%] (* A210802 *) %t A210802 Table[u[n, x] /. x -> 1, {n, 1, z}] (* A003462 *) %t A210802 Table[v[n, x] /. x -> 1, {n, 1, z}] (* A003462 *) %t A210802 Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000027 *) %t A210802 Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077898 *) %Y A210802 Cf. A210801, A208510. %K A210802 nonn,tabl %O A210802 1,2 %A A210802 _Clark Kimberling_, Mar 27 2012