A210803 Triangle of coefficients of polynomials u(n,x) jointly generated with A210804; see the Formula section.
1, 1, 1, 1, 3, 2, 1, 8, 10, 3, 1, 22, 37, 21, 5, 1, 63, 125, 100, 45, 8, 1, 185, 409, 410, 260, 88, 13, 1, 550, 1321, 1562, 1240, 598, 169, 21, 1, 1644, 4238, 5706, 5331, 3258, 1319, 315, 34, 1, 4925, 13534, 20284, 21507, 15651, 8071, 2776, 578, 55, 1
Offset: 1
Examples
First five rows: 1 1...1 1...3....2 1...8....10...3 1...22...37...21...5 First three polynomials u(n,x): 1, 1 + x, 1 + 3x + 2x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 0; h = -1; p = 3; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210803 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210804 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A047849 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000302 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000007 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000007 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x-1)*u(n-1,x)+(x+3)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = T(3,0) = 1, T(3,1) = 3, T(3,2) = 2, T(n,k) = 0 if k<0 or if k >= n. - Philippe Deléham, Jul 11 2012
G.f.: (-1+3*x)*x*y/(-1+4*x-3*x^2-2*x^2*y+x*y+x^2*y^2). - R. J. Mathar, Aug 12 2015
Comments