A210804 Triangle of coefficients of polynomials v(n,x) jointly generated with A210803; see the Formula section.
1, 2, 2, 5, 8, 3, 14, 27, 18, 5, 41, 88, 79, 40, 8, 122, 284, 310, 215, 80, 13, 365, 912, 1152, 980, 510, 156, 21, 1094, 2917, 4144, 4091, 2660, 1150, 294, 34, 3281, 9296, 14578, 16176, 12393, 6752, 2461, 544, 55, 9842, 29526, 50436, 61638, 53730
Offset: 1
Examples
First five rows: 1; 2, 2; 5, 8, 3; 14, 27, 18, 5; 41, 88, 79, 40, 8; First three polynomials v(n,x): 1 2 + 2x 5 + 8x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 0; h = -1; p = 3; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210803 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210804 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A047849 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000302 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000007 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000007 *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x) + 1, v(n,x) = (x-1)*u(n-1,x) + (x+3)*v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-2,k-2), T(1,0) = 1, T(2,0) = T(2,1) = 2, T(3,0) = 5, T(3,1) = 8, T(3,2) = 3, T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Jul 11 2012
G.f.: (-1+2*x-x*y)*x*y/(-1+4*x+x*y-3*x^2-2*x^2*y+x^2*y^2). - R. J. Mathar, Aug 12 2015
Comments