A210806 Triangle of coefficients of polynomials v(n,x) jointly generated with A210805; see the Formula section.
1, 0, 2, 1, 1, 3, 0, 3, 3, 5, 1, 2, 8, 7, 8, 0, 4, 8, 19, 15, 13, 1, 3, 15, 25, 42, 30, 21, 0, 5, 15, 46, 67, 89, 58, 34, 1, 4, 24, 58, 128, 164, 182, 109, 55, 0, 6, 24, 90, 186, 330, 378, 363, 201, 89, 1, 5, 35, 110, 300, 536, 804, 833, 709, 365, 144, 0, 7, 35, 155
Offset: 1
Examples
First five rows: 1 0...2 1...1...3 0...3...3...5 1...2...8...7...8 First three polynomials v(n,x): 1, 2x, 1 + x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 0; h = 2; p = -1; f = -1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210805 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210806 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)-1,
where u(1,x)=1, v(1,x)=1.
Comments