cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210812 Number of spanning trees in C_8 X P_n.

This page as a plain text file.
%I A210812 #17 Nov 13 2015 16:08:23
%S A210812 8,150528,1633023000,16435095011328,163038254770568232,
%T A210812 1612366324251306624000,15934583650849932493684792,
%U A210812 157453155560517847607911907328,1555776346581461837260983280509000,15372327644619615416626608479388244992
%N A210812 Number of spanning trees in C_8 X P_n.
%C A210812 A linear divisibility sequence. Factorizes as a product of second-order and fourth-order linear divisibility sequences. See Formula section. - _Peter Bala_, May 02 2014
%H A210812 Alois P. Heinz, <a href="/A210812/b210812.txt">Table of n, a(n) for n = 1..50</a>
%H A210812 <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F A210812 a(n) = 8*U(n-1,2)^2*U(n-1,3)*( U(n-1,(4+sqrt(2))/2)*U(n-1,(4-sqrt(2))/2) )^2 = 8*A001353(n)^2 * A001109(n) * A161158(n-1)^2, where U(n,x) is a Chebyshev polynomial of the second kind. - _Peter Bala_, May 02 2014
%p A210812 seq(expand(8*ChebyshevU(n-1,2)^2*ChebyshevU(n-1,3)*( ChebyshevU(n-1,(4+sqrt(2))/2)*ChebyshevU(n-1,(4-sqrt(2))/2) )^2), n = 1..10); # _Peter Bala_, May 02 2014
%Y A210812 8th column of A173958.
%Y A210812 Cf. A001109, A001353, A161158.
%K A210812 nonn
%O A210812 1,1
%A A210812 _Alois P. Heinz_, Mar 26 2012