cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210843 Level of the n-th plateau of the column k of the square array A195825, when k -> infinity.

Original entry on oeis.org

1, 4, 13, 35, 86, 194, 415, 844, 1654, 3133, 5773, 10372, 18240, 31449, 53292, 88873, 146095, 236977, 379746, 601656, 943305, 1464501, 2252961, 3436182, 5198644, 7805248, 11634685, 17224795, 25336141, 37038139, 53828275, 77792869
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2012

Keywords

Comments

Also the first (k+1)/2 terms of this sequence are the levels of the (k+1)/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 2, if k is odd.
Also the first k/2 terms of this sequence are the levels of the k/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 3, if k is a positive even number.
For the visualization of the plateaus see the graph of the sequences mentioned in crossrefs section (columns k=1..10 of A195825), for example see the graph of A210964.
Also numbers that are repeated in column k of square array A195825, when k -> infinity.
Note that the definition and the comments related to the square array A195825 mentioned above are also valid for the square array A211970, since both arrays contains the same columns, if k >= 1.
Is this the EULER transform of 4, 3, 3, 3, 3, 3, 3...?

Examples

			Column 1 of A195825 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. So a(1) = 1.
Column 3 of A195825 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains only two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. So a(1)= 1 and a(2) = 2.
Column 6 of A195825 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. So a(1) = 1, a(2) = 4 and a(3) = 13.
		

Crossrefs

Partial sums of A000716. Column 3 of A210764.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^3,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)

Formula

From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(2*n)/Pi * A000716(n).
a(n) ~ exp(sqrt(2*n)*Pi) / (8*Pi*n).
(End)