A210859 Triangle of coefficients of polynomials v(n,x) jointly generated with A210858; see the Formula section.
1, 2, 2, 3, 6, 3, 4, 16, 17, 5, 5, 35, 62, 40, 8, 6, 66, 189, 206, 90, 13, 7, 112, 494, 822, 603, 191, 21, 8, 176, 1133, 2787, 3101, 1638, 393, 34, 9, 261, 2337, 8255, 13209, 10483, 4175, 786, 55, 10, 370, 4427, 21730, 48753, 55089, 32705, 10157, 1540
Offset: 1
Examples
First five rows: 1 2...2 3...6....3 4...16...17...5 5...35...62...40...8 First three polynomials v(n,x): 1, 2 + 2x, 3 + 6x + 3x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210858 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210859 *) Table[u[n, x] /. x -> 1, {n, 1, z}] Table[v[n, x] /. x -> 1, {n, 1, z}] Table[u[n, x] /. x -> -1, {n, 1, z}] Table[v[n, x] /. x -> -1, {n, 1, z}]
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Comments