A210868 Triangle of coefficients of polynomials u(n,x) jointly generated with A210869; see the Formula section.
1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 5, 3, 5, 1, 3, 5, 10, 5, 8, 1, 3, 9, 10, 20, 8, 13, 1, 4, 9, 22, 20, 38, 13, 21, 1, 4, 14, 22, 51, 38, 71, 21, 34, 1, 5, 14, 40, 51, 111, 71, 130, 34, 55, 1, 5, 20, 40, 105, 111, 233, 130, 235, 55, 89, 1, 6, 20, 65, 105, 256, 233, 474
Offset: 1
Examples
First six rows: 1 1...1 1...1...2 1...2...2...3 1...2...5...3....5 1...3...5...10...5...8 First three polynomials u(n,x): 1, 1 + x, 1 + x + 2x^2. (1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins : 1 1, 0 1, 1, 0 1, 1, 2, 0 1, 2, 2, 3, 0 1, 2, 5, 3, 5, 0 1, 3, 5, 10, 5, 8, 0. - _Philippe Deléham_, Apr 02 2012
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x] - x; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210866 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210867 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 02 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n :
G.f.: (1+x-y*x-y^2*x^2)/(1-y*x-y^2*x^2-x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
Comments