cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210868 Triangle of coefficients of polynomials u(n,x) jointly generated with A210869; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 5, 3, 5, 1, 3, 5, 10, 5, 8, 1, 3, 9, 10, 20, 8, 13, 1, 4, 9, 22, 20, 38, 13, 21, 1, 4, 14, 22, 51, 38, 71, 21, 34, 1, 5, 14, 40, 51, 111, 71, 130, 34, 55, 1, 5, 20, 40, 105, 111, 233, 130, 235, 55, 89, 1, 6, 20, 65, 105, 256, 233, 474
Offset: 1

Views

Author

Clark Kimberling, Mar 29 2012

Keywords

Comments

In row n the first two terms are 1 and floor(n/2), and the last two, for n>1, are F(n-1) and F(n), where F = A000045 (Fibonacci numbers).
Row sums: 1,2,4,8,16,32,...; A000079.
Alternating row sums: A151575
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012

Examples

			First six rows:
  1
  1...1
  1...1...2
  1...2...2...3
  1...2...5...3....5
  1...3...5...10...5...8
First three polynomials u(n,x): 1, 1 + x, 1 + x + 2x^2.
(1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 1, 2, 0
1, 2, 2, 3, 0
1, 2, 5, 3, 5, 0
1, 3, 5, 10, 5, 8, 0. - _Philippe Deléham_, Apr 02 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x] - x;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210866 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210867 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 02 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n :
G.f.: (1+x-y*x-y^2*x^2)/(1-y*x-y^2*x^2-x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)