A210869 Triangle of coefficients of polynomials v(n,x) jointly generated with A210868; see the Formula section.
1, 0, 2, 1, 0, 3, 0, 3, 0, 5, 1, 0, 7, 0, 8, 0, 4, 0, 15, 0, 13, 1, 0, 12, 0, 30, 0, 21, 0, 5, 0, 31, 0, 58, 0, 34, 1, 0, 18, 0, 73, 0, 109, 0, 55, 0, 6, 0, 54, 0, 162, 0, 201, 0, 89, 1, 0, 25, 0, 145, 0, 344, 0, 365, 0, 144, 0, 7, 0, 85, 0, 361, 0, 707, 0, 655, 0, 233, 1, 0
Offset: 1
Examples
First six rows: 1 0...2 1...0...3 0...3...0...5 1...0...7...0....8 0...4...0...15...0...13 First three polynomials v(n,x): 1, 2x, 1 + 3x^2
Programs
-
Mathematica
u[1,x_]:=1;v[1,x_]:=1;z=14; u[n_,x_]:=u[n-1,x]+x*v[n-1,x]; v[n_,x_]:=(x+1)*u[n-1,x]+(x-1)*v[n-1,x]; Table[Expand[u[n,x]],{n,1,z/2}] Table[Expand[v[n,x]],{n,1,z/2}] cu=Table[CoefficientList[u[n,x],x],{n,1,z}]; TableForm[cu] Flatten[%] (* A210868 *) cv=Table[CoefficientList[v[n,x],x],{n,1,z}]; TableForm[cv] Flatten[%] (* A210869 *) Table[u[n,x]/.x->1,{n,1,z}] (* A000079 *) Table[v[n,x]/.x->1,{n,1,z}] (* A000079 *) Table[u[n,x]/.x->-1,{n,1,z}] (* A151575 *) Table[v[n,x]/.x->-1,{n,1,z}] (* A122803 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Apr 02 2012
Comments