A210872 Triangle of coefficients of polynomials u(n,x) jointly generated with A210873; see the Formula section.
1, 0, 1, 0, 2, 1, 0, 1, 5, 1, 0, 1, 4, 9, 1, 0, 1, 3, 12, 14, 1, 0, 1, 3, 9, 29, 20, 1, 0, 1, 3, 8, 27, 60, 27, 1, 0, 1, 3, 8, 22, 74, 111, 35, 1, 0, 1, 3, 8, 21, 63, 181, 189, 44, 1, 0, 1, 3, 8, 21, 56, 178, 399, 302, 54, 1, 0, 1, 3, 8, 21, 55, 154, 474, 806, 459, 65, 1, 0, 1
Offset: 1
Examples
First six rows: 1 0...1 0...2...1 0...1...5...1 0...1...4...9....1 0...1...3...12...14...1 First three polynomials u(n,x): 1, x, 2x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210872 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210873 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A083318 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* -A077973 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)-1,
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=2x*u(n-1,x)+(x-x^2)*u(n-2,x)+x, where u(2,x)=x.
Comments