cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210872 Triangle of coefficients of polynomials u(n,x) jointly generated with A210873; see the Formula section.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 5, 1, 0, 1, 4, 9, 1, 0, 1, 3, 12, 14, 1, 0, 1, 3, 9, 29, 20, 1, 0, 1, 3, 8, 27, 60, 27, 1, 0, 1, 3, 8, 22, 74, 111, 35, 1, 0, 1, 3, 8, 21, 63, 181, 189, 44, 1, 0, 1, 3, 8, 21, 56, 178, 399, 302, 54, 1, 0, 1, 3, 8, 21, 55, 154, 474, 806, 459, 65, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 29 2012

Keywords

Comments

Column 1: 1,0,0,0,0,0,0,0,0,...
Row sums: A000225 (-1+2^n)
Alternating row sums: (-1)*A077973
Limiting row: 0,1,3,8,21,..., even-indexed Fibonacci numbers
If the term in row n and column k is written as U(n,k), then U(n,n-1)=A000096 and U(n,n-2)=A086274.
For a discussion and guide to related arrays, see A208510.

Examples

			First six rows:
1
0...1
0...2...1
0...1...5...1
0...1...4...9....1
0...1...3...12...14...1
First three polynomials u(n,x): 1, x, 2x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1;
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210872 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210873 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A083318 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* -A077973 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A137470 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x)-1,
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=2x*u(n-1,x)+(x-x^2)*u(n-2,x)+x, where u(2,x)=x.