cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210874 Triangular array U(n,k) of coefficients of polynomials defined in Comments.

This page as a plain text file.
%I A210874 #9 Oct 26 2024 04:57:18
%S A210874 1,2,3,3,5,4,4,7,7,7,5,9,10,12,11,6,11,13,17,19,18,7,13,16,22,27,31,
%T A210874 29,8,15,19,27,35,44,50,47,9,17,22,32,43,57,71,81,76,10,19,25,37,51,
%U A210874 70,92,115,131,123,11,21,28,42,59,83,113,149,186,212,199,12,23,31
%N A210874 Triangular array U(n,k) of coefficients of polynomials defined in Comments.
%C A210874 Polynomials u(n,k) are defined by u(n,x)=x*u(n-1,x)+(x^2)*u(n-2,x)+n*(x+1), where u(1)=1 and u(2,x)=3x+2.  The array (U(n,k)) is defined by rows:
%C A210874 u(n,x)=U(n,1)+U(n,2)*x+...+U(n,n-1)*x^(n-1).
%C A210874 In each column, the first number is a Lucas number and the difference between each two consecutive terms is a Fibonacci number (see the Formula section).
%C A210874 Alternating row sums: 1,-2,3,-5,8,-13,21,... (signed Fibonacci numbers)
%F A210874 Column k consists of the partial sums of the following sequence: L(k), F(k+1), F(k+1), F(k+1), F(k+1),..., where L=A000032 (Lucas numbers) and F=A000045 (Fibonacci numbers). That is, U(n+1,k)-U(n,k)=F(k+1) for n>1.
%e A210874 First six rows:
%e A210874   1
%e A210874   2...3
%e A210874   3...5...4
%e A210874   4...7...7....7
%e A210874   5...9...10...12...11
%e A210874   6...11..13...17...19...18
%e A210874 First three polynomials u(n,x): 1, 2 + 3x, 3 + 5x + 4x^2.
%t A210874 u[1, x_] := 1; u[2, x_] := 3 x + 2; z = 14;
%t A210874 u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
%t A210874 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210874 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210874 TableForm[cu]
%t A210874 Flatten[%]     (* A210874 *)
%Y A210874 Cf. A208510, A210881, A210875, A210880.
%K A210874 nonn,tabl
%O A210874 1,2
%A A210874 _Clark Kimberling_, Mar 30 2012