cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210875 Triangular array U(n,k) of coefficients of polynomials defined in Comments.

This page as a plain text file.
%I A210875 #10 Oct 26 2024 04:57:13
%S A210875 1,1,1,3,4,2,4,7,5,3,5,9,10,9,5,6,11,13,17,14,8,7,13,16,22,27,23,13,8,
%T A210875 15,19,27,35,44,37,21,9,17,22,32,43,57,71,60,34,10,19,25,37,51,70,92,
%U A210875 115,97,55,11,21,28,42,59,83,113,149,186,157,89,12,23,31,47,67
%N A210875 Triangular array U(n,k) of coefficients of polynomials defined in Comments.
%C A210875 Polynomials u(n,k) are defined by u(n,x)=x*u(n-1,x)+(x^2)*u(n-2,x)+n*(x+1), where u(1)=1 and u(2,x)=x+1.  The array (U(n,k)) is defined by rows:
%C A210875 u(n,x)=U(n,1)+U(n,2)*x+...+U(n,n-1)*x^(n-1).
%C A210875 In each column, the first number is a Fibonacci number and, with one exception, the difference between each two consecutive terms is a Fibonacci number (see the Formula section).
%C A210875 Alternating row sums: 1,0,1,-2,3,-5,8,-13,21,... (signed Fibonacci numbers)
%F A210875 Column k consists of the partial sums of the following sequence: F(k), 3*F(k-1), F(k+2), F(k+1), F(k+1),..., where F=A000045 (Fibonacci numbers). That is, U(n+1,k)-U(n,k)=F(k+1) for n>2.
%e A210875 First six rows:
%e A210875   1
%e A210875   1...1
%e A210875   3...4....2
%e A210875   4...7....5....3
%e A210875   5...9....10...9....5
%e A210875   6...11...13...17...14...8
%e A210875 First three polynomials u(n,x): 1, 1 + 3x, 3 + 4x + 2x^2.
%t A210875 u[1, x_] := 1; u[2, x_] := x + 1; z = 14;
%t A210875 u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
%t A210875 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210875 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210875 TableForm[cu]
%t A210875 Flatten[%]   (* A210875 *)
%Y A210875 Cf. A208510, A210881, A210874.
%K A210875 nonn,tabl
%O A210875 1,4
%A A210875 _Clark Kimberling_, Mar 30 2012