This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210876 #5 Oct 02 2013 16:26:12 %S A210876 1,2,1,1,5,1,1,4,9,1,1,3,12,14,1,1,3,9,29,20,1,1,3,8,27,60,27,1,1,3,8, %T A210876 22,74,111,35,1,1,3,8,21,63,181,189,44,1,1,3,8,21,56,178,399,302,54,1, %U A210876 1,3,8,21,55,154,474,806,459,65,1,1,3,8,21,55,145,430,1169 %N A210876 Triangle of coefficients of polynomials u(n,x) jointly generated with A210877; see the Formula section. %C A210876 For n>2, each row begins with 1 and ends with 1. If the term in row n and column k is denoted by U(n,k), then U(n,n-2)=A000096(n-1) and U(n,n-3)=A086274(n-1). %C A210876 Row sums: A000225 (-1+2^n) %C A210876 Alternating row sums: A077973 %C A210876 Limiting row: 1,3,8,21,55,..., even-indexed Fibonacci numbers %C A210876 For a discussion and guide to related arrays, see A208510. %F A210876 u(n,x)=x*u(n-1,x)+v(n-1,x)+1, %F A210876 v(n,x)=x*u(n-1,x)+x*v(n-1,x)+x, %F A210876 where u(1,x)=1, v(1,x)=1. %e A210876 First six rows: %e A210876 1 %e A210876 2...1 %e A210876 1...5...1 %e A210876 1...4...9....1 %e A210876 1...3...12...14...1 %e A210876 1...3...9....29...20...1 %e A210876 First three polynomials u(n,x): 1, 2 + x, 1 + 5x + x^2. %t A210876 u[1, x_] := 1; v[1, x_] := 1; z = 14; %t A210876 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; %t A210876 v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + x; %t A210876 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210876 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210876 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210876 TableForm[cu] %t A210876 Flatten[%] (* A210876 *) %t A210876 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210876 TableForm[cv] %t A210876 Flatten[%] (* A210877 *) %t A210876 Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) %t A210876 Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) %t A210876 Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077973 *) %t A210876 Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *) %Y A210876 Cf. A210877, A208510. %K A210876 nonn,tabl %O A210876 1,2 %A A210876 _Clark Kimberling_, Mar 30 2012