This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210878 #5 Oct 02 2013 16:26:13 %S A210878 1,0,3,0,4,7,0,2,14,17,0,2,12,46,41,0,2,8,54,140,99,0,2,8,42,212,408, %T A210878 239,0,2,8,34,200,758,1154,577,0,2,8,34,160,866,2544,3194,1393,0,2,8, %U A210878 34,144,754,3448,8154,8696,3363,0,2,8,34,144,642,3400,12850 %N A210878 Triangle of coefficients of polynomials u(n,x) jointly generated with A210879; see the Formula section. %C A210878 Leading coefficient of u(n,x): A001333 %C A210878 Limiting row: 0,2,8,34,144,610,...(Fibonacci numbers) %C A210878 For a discussion and guide to related arrays, see A208510. %F A210878 u(n,x)=x*u(n-1,x)+2x*v(n-1,x), %F A210878 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, %F A210878 where u(1,x)=1, v(1,x)=1. %e A210878 First six rows: %e A210878 1 %e A210878 0...3 %e A210878 0...4...7 %e A210878 0...2...14...17 %e A210878 0...2...12...46...41 %e A210878 0...2...8....54...140...99 %e A210878 First three polynomials u(n,x): 1, 3x, 4x + 7x^2. %t A210878 u[1, x_] := 1; v[1, x_] := 1; z = 14; %t A210878 u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; %t A210878 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; %t A210878 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210878 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210878 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210878 TableForm[cu] %t A210878 Flatten[%] (* A210878 *) %t A210878 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210878 TableForm[cv] %t A210878 Flatten[%] (* A210879 *) %Y A210878 Cf. A210879, A208510. %K A210878 nonn,tabl %O A210878 1,3 %A A210878 _Clark Kimberling_, Mar 30 2012