cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210879 Triangle of coefficients of polynomials v(n,x) jointly generated with A210878; see the Formula section.

This page as a plain text file.
%I A210879 #5 Oct 02 2013 16:26:13
%S A210879 1,2,2,1,5,5,1,5,16,12,1,3,21,47,29,1,3,17,79,134,70,1,3,13,79,273,
%T A210879 373,169,1,3,13,63,333,893,1020,408,1,3,13,55,297,1291,2805,2751,985,
%U A210879 1,3,13,55,249,1323,4701,8543,7338,2378,1,3,13,55,233,1147,5525
%N A210879 Triangle of coefficients of polynomials v(n,x) jointly generated with A210878; see the Formula section.
%C A210879 Leading coefficient of v(n,x):  A000129
%C A210879 Alternating row sums:  1,0,1,0,1,0,1,0,1,0,...
%C A210879 Limiting row:  1,3,13,55,233,987...( Fibonacci numbers)
%C A210879 For a discussion and guide to related arrays, see A208510.
%F A210879 u(n,x)=x*u(n-1,x)+2x*v(n-1,x),
%F A210879 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
%F A210879 where u(1,x)=1, v(1,x)=1.
%e A210879 First six rows:
%e A210879 1
%e A210879 2...2
%e A210879 1...5...5
%e A210879 1...5...16...12
%e A210879 1...3...21...47....29
%e A210879 1...3...17...79...134...70
%e A210879 First three polynomials v(n,x): 1, 2 + 2x, 1 + 5x + 5x^2
%t A210879 u[1, x_] := 1; v[1, x_] := 1; z = 14;
%t A210879 u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
%t A210879 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
%t A210879 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210879 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A210879 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210879 TableForm[cu]
%t A210879 Flatten[%]    (* A210878 *)
%t A210879 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A210879 TableForm[cv]
%t A210879 Flatten[%]    (* A210879 *)
%Y A210879 Cf. A210878, A208510.
%K A210879 nonn,tabl
%O A210879 1,2
%A A210879 _Clark Kimberling_, Mar 30 2012