This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210879 #5 Oct 02 2013 16:26:13 %S A210879 1,2,2,1,5,5,1,5,16,12,1,3,21,47,29,1,3,17,79,134,70,1,3,13,79,273, %T A210879 373,169,1,3,13,63,333,893,1020,408,1,3,13,55,297,1291,2805,2751,985, %U A210879 1,3,13,55,249,1323,4701,8543,7338,2378,1,3,13,55,233,1147,5525 %N A210879 Triangle of coefficients of polynomials v(n,x) jointly generated with A210878; see the Formula section. %C A210879 Leading coefficient of v(n,x): A000129 %C A210879 Alternating row sums: 1,0,1,0,1,0,1,0,1,0,... %C A210879 Limiting row: 1,3,13,55,233,987...( Fibonacci numbers) %C A210879 For a discussion and guide to related arrays, see A208510. %F A210879 u(n,x)=x*u(n-1,x)+2x*v(n-1,x), %F A210879 v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, %F A210879 where u(1,x)=1, v(1,x)=1. %e A210879 First six rows: %e A210879 1 %e A210879 2...2 %e A210879 1...5...5 %e A210879 1...5...16...12 %e A210879 1...3...21...47....29 %e A210879 1...3...17...79...134...70 %e A210879 First three polynomials v(n,x): 1, 2 + 2x, 1 + 5x + 5x^2 %t A210879 u[1, x_] := 1; v[1, x_] := 1; z = 14; %t A210879 u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; %t A210879 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; %t A210879 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210879 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210879 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210879 TableForm[cu] %t A210879 Flatten[%] (* A210878 *) %t A210879 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210879 TableForm[cv] %t A210879 Flatten[%] (* A210879 *) %Y A210879 Cf. A210878, A208510. %K A210879 nonn,tabl %O A210879 1,2 %A A210879 _Clark Kimberling_, Mar 30 2012