cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210880 Triangular array U(n,k) of coefficients of polynomials defined in Comments.

This page as a plain text file.
%I A210880 #8 Oct 26 2024 04:57:09
%S A210880 1,2,1,3,5,2,4,7,7,3,5,9,10,12,5,6,11,13,17,19,8,7,13,16,22,27,31,13,
%T A210880 8,15,19,27,35,44,50,21,9,17,22,32,43,57,71,81,34,10,19,25,37,51,70,
%U A210880 92,115,131,55,11,21,28,42,59,83,113,149,186,212,89,12,23,31,47
%N A210880 Triangular array U(n,k) of coefficients of polynomials defined in Comments.
%C A210880 Polynomials u(n,k) are defined by u(n,x)=x*u(n-1,x)+(x^2)*u(n-2,x)+n*(x+1), where u(1)=1 and u(2,x)=x+2.  The array (U(n,k)) is defined by rows:
%C A210880 u(n,x)=U(n,1)+U(n,2)*x+...+U(n,n-1)*x^(n-1).
%C A210880 In each column, the first number is a Fibonacci number and, with one exception, the difference between each two consecutive terms is a Fibonacci number (see the Formula section).
%C A210880 Alternating row sums: 1,1,0,1,-2,3,-5,8,-13,21,... (signed Fibonacci numbers)
%F A210880 Column k consists of the partial sums of the following sequence: F(k), F(k+2)+F(k-3), F(k+1), F(k+1), F(k+1),..., where F=A000045 (Fibonacci numbers). That is, U(n+1,k)-U(n,k)=F(k+1) for n>1.
%e A210880 First six rows:
%e A210880   1
%e A210880   2...1
%e A210880   3...5....2
%e A210880   4...7....7....3
%e A210880   5...9....10...12...5
%e A210880   6...11...13...17...19...8
%e A210880 First three polynomials u(n,x): 1, 2 + x, 3 + 5x + 2x^2.
%t A210880 u[1, x_] := 1; u[2, x_] := x + 2; z = 14;
%t A210880 u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
%t A210880 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210880 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210880 TableForm[cu]
%t A210880 Flatten[%]   (* A210880 *)
%Y A210880 Cf. A208510, A210881, A210874, A210875.
%K A210880 nonn,tabl
%O A210880 1,2
%A A210880 _Clark Kimberling_, Mar 30 2012