cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210881 Triangular array U(n,k) of coefficients of polynomials defined in Comments.

This page as a plain text file.
%I A210881 #5 Oct 02 2013 16:26:13
%S A210881 1,1,3,3,4,4,4,7,5,7,5,9,10,9,11,6,11,13,17,14,18,7,13,16,22,27,23,29,
%T A210881 8,15,19,27,35,44,37,47,9,17,22,32,43,57,71,60,76,10,19,25,37,51,70,
%U A210881 92,115,97,123,11,21,28,42,59,83,113,149,186,157,199,12,23,31
%N A210881 Triangular array U(n,k) of coefficients of polynomials defined in Comments.
%C A210881 Polynomials u(n,k) are defined by u(n,x)=x*u(n-1,x)+(x^2)*u(n-2,x)+n*(x+1), where u(1)=1 and u(2,x)=3x+1.  The array (U(n,k)) is defined by rows:
%C A210881 u(n,x)=U(n,1)+U(n,2)*x+...+U(n,n-1)*x^(n-1).
%C A210881 In each column, the first number is a Lucas number and the difference between each two consecutive terms is a Fibonacci number (see the Formula section).
%C A210881 Alternating row sums: 1,-2,3,-5,8,-13,21,... (signed Fibonacci numbers)
%F A210881 Column k consists of the partial sums of the following sequence: L(k), F(k-1), F(k+2), F(k+1), F(k+1), F(k+1),..., where L=A000032 (Lucas numbers) and F=000045 (Fibonacci numbers).  That is, U(n+1,k)-U(n,k)=F(k+1) for n>2.
%e A210881 First six rows:
%e A210881 1
%e A210881 1...3
%e A210881 3...4....4
%e A210881 4...7....5....7
%e A210881 5...9....10...9....11
%e A210881 6...11...13...17...14...18
%e A210881 First three polynomials u(n,x): 1, 1 + 3x, 3 + 4x + 4x^2.
%t A210881 u[1, x_] := 1; u[2, x_] := 3 x + 1; z = 14;
%t A210881 u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
%t A210881 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A210881 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A210881 TableForm[cu]
%t A210881 Flatten[%]   (* A210881 *)
%Y A210881 Cf. A208510, A210874, A210875.
%K A210881 nonn,tabl
%O A210881 1,3
%A A210881 _Clark Kimberling_, Mar 30 2012