cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210887 Number of days after Mar 01 00 such that the date written in the format DD.MM.YY is palindromic.

This page as a plain text file.
%I A210887 #24 Feb 03 2021 23:07:45
%S A210887 619,994,1369,3897,4272,4648,7551,7926,8301,11204,11579,11955,14858,
%T A210887 15233,15608,18511,18886,19262,22165,22540,22915,25818,26193,26569,
%U A210887 29472,29847,30222,33125,33500,33876
%N A210887 Number of days after Mar 01 00 such that the date written in the format DD.MM.YY is palindromic.
%C A210887 There are exactly 30 such palindromic dates between Jan 01 00 and Dec 31 99 (see b-file for the complete list).
%C A210887 See A210888 for the corresponding dates.
%C A210887 The reference date Mar 01 00 makes sense, since this result in a sequence which is independent from the leap year / non-leap year property of the reference year "00".
%H A210887 Hieronymus Fischer, <a href="/A210887/b210887.txt">Table of n, a(n) for n = 1..30</a>
%H A210887 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).
%F A210887 From _Chai Wah Wu_, Feb 03 2021: (Start)
%F A210887 a(n) = a(n-1) + a(n-6) - a(n-7) for n > 10.
%F A210887 G.f.: x*(375*x^9 + 2284*x^6 + 376*x^5 + 375*x^4 + 2528*x^3 + 375*x^2 + 375*x + 619)/(x^7 - x^6 - x + 1). (End)
%e A210887 The first palindromic date in DD.MM.YY format after "Jan 01 00" is A210888(1)=101101 (="10.11.01"= "Nov 10 01" = "Mar 01 00" + 619 days);
%e A210887 The sixth palindromic date in DD.MM.YY format after "Jan 01 00" is A210888(6)=211112 (="21.11.12"= "Nov 21 12" = "Mar 01 00" + 4648 days).
%e A210887 The last (30th) palindromic date in DD.MM.YY format after "Jan 01 00" is A210888(30)=291192 (="29.11.92"= "Nov 29 92" = "Mar 01 00" + 33876 days).
%Y A210887 Cf. A210883-A210886, A210888-A210895, A106605, A107273, A107275.
%K A210887 nonn,base
%O A210887 1,1
%A A210887 _Hieronymus Fischer_, Apr 01 2012