cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210937 Decimal expansion of the continued fraction 1'+1/(2'+2/(3'+3/...)), where n' is the arithmetic derivative of n.

Original entry on oeis.org

4, 2, 1, 4, 7, 8, 1, 6, 1, 2, 9, 8, 8, 6, 7, 3, 0, 9, 0, 6, 2, 0, 0, 9, 1, 1, 0, 4, 1, 1, 2, 1, 3, 6, 4, 3, 1, 1, 1, 4, 6, 0, 3, 3, 5, 0, 7, 7, 6, 8, 0, 9, 0, 3, 9, 6, 8, 4, 3, 3, 7, 4, 7, 8, 7, 9, 0, 8, 7, 9, 1, 4, 5, 4, 0, 0, 2, 2, 2, 0, 4, 8, 8, 1, 6, 9, 0, 0, 8, 5, 8, 7, 0, 5, 4, 9, 6, 8, 4, 4, 7, 5, 3, 5, 8, 2, 8, 2, 4, 3, 0, 7, 7, 2, 5, 0, 5, 0, 2, 4, 2, 5, 4, 2, 5, 8, 2, 8, 2
Offset: 0

Views

Author

Paolo P. Lava, May 11 2012

Keywords

Comments

A good approximation up to the 9th decimal digit is 4796/11379.

Examples

			0.42147816129886730906200911...
		

References

  • 1

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210937:= proc(n)
    local a,b,c,I,p,pfs;
    b:=1;
    for i from n by -1 to 2 do
      pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs); b:=1/b*a+i;
    od;
    print(evalf(b,500));
    end:
    A210937(10000);
  • Mathematica
    digits = 129; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1&, FactorInteger[n], {1}]]; f[m_] := f[m] = Fold[d[#2]+#2/#1&, 1, Range[m] // Reverse] // RealDigits[#, 10, digits]& // First; f[digits]; f[m = 2digits]; While[f[m] != f[m/2], m = 2m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)