A210937 Decimal expansion of the continued fraction 1'+1/(2'+2/(3'+3/...)), where n' is the arithmetic derivative of n.
4, 2, 1, 4, 7, 8, 1, 6, 1, 2, 9, 8, 8, 6, 7, 3, 0, 9, 0, 6, 2, 0, 0, 9, 1, 1, 0, 4, 1, 1, 2, 1, 3, 6, 4, 3, 1, 1, 1, 4, 6, 0, 3, 3, 5, 0, 7, 7, 6, 8, 0, 9, 0, 3, 9, 6, 8, 4, 3, 3, 7, 4, 7, 8, 7, 9, 0, 8, 7, 9, 1, 4, 5, 4, 0, 0, 2, 2, 2, 0, 4, 8, 8, 1, 6, 9, 0, 0, 8, 5, 8, 7, 0, 5, 4, 9, 6, 8, 4, 4, 7, 5, 3, 5, 8, 2, 8, 2, 4, 3, 0, 7, 7, 2, 5, 0, 5, 0, 2, 4, 2, 5, 4, 2, 5, 8, 2, 8, 2
Offset: 0
Examples
0.42147816129886730906200911...
References
- 1
Programs
-
Maple
with(numtheory); A210937:= proc(n) local a,b,c,I,p,pfs; b:=1; for i from n by -1 to 2 do pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs); b:=1/b*a+i; od; print(evalf(b,500)); end: A210937(10000);
-
Mathematica
digits = 129; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1&, FactorInteger[n], {1}]]; f[m_] := f[m] = Fold[d[#2]+#2/#1&, 1, Range[m] // Reverse] // RealDigits[#, 10, digits]& // First; f[digits]; f[m = 2digits]; While[f[m] != f[m/2], m = 2m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)
Comments