cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210960 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which list the number of parts in the columns of the shell model of partitions with n shells mentioned in A210970.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Examples

			--------------------------------------------------------
Illustration of first five
slices of the tetrahedron                       Row sum
--------------------------------------------------------
. 1,                                               1
.    1,                                            1
.    1, 1,                                         2
.          1,                                      1
.          1, 1,                                   2
.          1, 1, 1,                                3
.                   1,                             1
.                   1, 1,                          2
.                   2, 1, 1,                       4
.                   1, 2, 1, 1,                    5
.                               1,                 1
.                               1, 1,              2
.                               2, 1, 1,           4
.                               2, 2, 1, 1,        6
.                               1, 2, 2, 1, 1,     7
--------------------------------------------------------
. 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1,
.
It appears that column sums give A058399.
Also, written as a triangle read by rows in which each row is a flattened triangle, begins:
1;
1,1,1,
1,1,1,1,1,1;
1,1,1,2,1,1,1,2,1,1;
1,1,1,2,1,1,2,2,1,1,1,2,2,1,1;
1,1,1,2,1,1,3,2,1,1,3,3,2,1,1,1,3,3,2,1,1;
1,1,1,2,1,1,3,2,1,1,4,3,2,1,1,3,4,3,2,1,1,1,3,4,3,2,1,1;
In which row sums give A006128.
		

Crossrefs