A210969 Sum of all region numbers of all parts of the last section of the set of partitions of n.
1, 4, 9, 29, 55, 157, 277, 669, 1212, 2555, 4459, 9048
Offset: 1
Examples
For n = 6 the four regions of the last section of 6 are [2], [4, 2], [3], [6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1] therefore the "region numbers" are [8], [9, 9], [10], [11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11]. The sum of all region numbers is a(6) = 8+2*9+10+11^2 = 8+18+10+121 = 157, see below: -------------------------------------------- . Last section Sum of . of the set of Region region k partitions of 6 numbers numbers -------------------------------------------- 11 6 11 11 10 3+3 10,11 21 9 4 +2 9, 11 20 8 2+2 +2 8,9, 11 28 7 1 11 11 6 1 11 11 5 1 11 11 4 1 11 11 3 1 11 11 2 1 11 11 1 1 11 11 -------------------------------------------- Total sum of region numbers is a(6) = 157
Links
- Omar E. Pol, Illustration of the seven regions of 5
Comments