This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210968 #14 May 25 2019 02:35:03 %S A210968 12,20,28,63,44,52,117,68,76,171,92,207,345,116,124,279,465,148,333, %T A210968 164,172,387,188,423,705,212,477,795,236,244,549,915,268,603,284,292, %U A210968 657,1095,316,711,332,747,1245,356,801,1335,1869,388 %N A210968 Smallest prime product p*q*r such that p + q + r = 2*n + 1. %C A210968 From _Robert Israel_, May 24 2019: (Start) %C A210968 If p is an odd prime, then a((p+3)/2) = 4*p. %C A210968 If p > 2 is in A067774, then a((p+5)/2) = 9*p. (End) %H A210968 Robert Israel, <a href="/A210968/b210968.txt">Table of n, a(n) for n = 3..10000</a> %p A210968 N:= 100: # for a(3)..a(N) %p A210968 P:= select(isprime, [2,seq(i,i=3..2*N+1,2)]): nP:= nops(P): %p A210968 A:= Vector([infinity$(2*N+1)]): %p A210968 for i from 1 to nP while 2*P[i] <= 2*N+1 do %p A210968 p:= P[i]; %p A210968 for j from i to nP while p+P[j] <= 2*N+1 do %p A210968 if p*P[j] < A[p+P[j]] then A[p+P[j]]:= p*P[j] fi %p A210968 od od: %p A210968 B:= Vector([infinity$(2*N+1)]): %p A210968 for i from 1 to nP while 3*P[i] <= 2*N+1 do %p A210968 p:= P[i]; %p A210968 for x from 4 to 2*N+1-p do %p A210968 y:= p+x; %p A210968 if A[x]*p < B[y] then B[y]:= A[x]*p fi %p A210968 od od: %p A210968 [seq(B[2*i+1],i=3..N)]; # _Robert Israel_, May 24 2019 %Y A210968 Cf. A067774, A210967. %K A210968 nonn,look %O A210968 3,1 %A A210968 _Omar E. Pol_, Jun 29 2012