cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210970 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 9, 18, 34, 55, 91, 136, 208, 301, 439, 616, 876, 1203, 1665, 2256, 3062, 4083, 5459, 7186, 9470, 12335, 16051, 20688, 26648, 34027, 43395, 54966, 69496, 87341, 109591, 136766, 170382, 211293, 261519, 322382, 396694, 486327, 595143, 725954, 883912
Offset: 0

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Comments

For more information see A135010 and A182703.

Examples

			For n = 6 the illustration of the three views of a three-dimensional version of the shell model of partitions with 6 shells looks like this:
.
.   A006128(6) = 35     A006128(6) = 35
.
.                 6     6
.               3 3     3 3
.               4 2     4 2
.             2 2 2     2 2 2
.               5 1     5 1
.             3 2 1     3 2 1
.             4 1 1     4 1 1
.           2 2 1 1     2 2 1 1
.           3 1 1 1     3 1 1 1
.         2 1 1 1 1     2 1 1 1 1
.       1 1 1 1 1 1     1 1 1 1 1 1
.
.
.       1 2 5 9 12 6  \
.         1 1 3 5 6    \
.           1 1 2 4     \ 6th slice of
.             1 1 2     / tetrahedron A210961
.               1 1    /
.                 1   /
.
.      A000217(6) = 21
.
The areas of the shadows of the three views are A006128(6) = 35, A006128(6) = 35 and A000217(6) = 21, therefore the total area of the three shadows is 35+35+21 = 91, so a(6) = 91.
		

Crossrefs

Formula

a(n) = 2*A006128(n) + A000217(n).