A210970 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.
0, 3, 9, 18, 34, 55, 91, 136, 208, 301, 439, 616, 876, 1203, 1665, 2256, 3062, 4083, 5459, 7186, 9470, 12335, 16051, 20688, 26648, 34027, 43395, 54966, 69496, 87341, 109591, 136766, 170382, 211293, 261519, 322382, 396694, 486327, 595143, 725954, 883912
Offset: 0
Keywords
Examples
For n = 6 the illustration of the three views of a three-dimensional version of the shell model of partitions with 6 shells looks like this: . . A006128(6) = 35 A006128(6) = 35 . . 6 6 . 3 3 3 3 . 4 2 4 2 . 2 2 2 2 2 2 . 5 1 5 1 . 3 2 1 3 2 1 . 4 1 1 4 1 1 . 2 2 1 1 2 2 1 1 . 3 1 1 1 3 1 1 1 . 2 1 1 1 1 2 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 . . . 1 2 5 9 12 6 \ . 1 1 3 5 6 \ . 1 1 2 4 \ 6th slice of . 1 1 2 / tetrahedron A210961 . 1 1 / . 1 / . . A000217(6) = 21 . The areas of the shadows of the three views are A006128(6) = 35, A006128(6) = 35 and A000217(6) = 21, therefore the total area of the three shadows is 35+35+21 = 91, so a(6) = 91.
Comments