This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210971 #13 Mar 11 2014 01:34:20 %S A210971 1,3,2,6,5,3,11,10,8,9,5,18,17,15,16,12,13,7,29,28,26,27,23,24,18,28, %T A210971 20,21,11 %N A210971 Triangle read by rows in which row n lists the region number of the parts of the k-th partition of n, with partitions reverse lexicographically ordered. %C A210971 Each part of a partition of n belongs to a different region of n. The "region number" of a part of the r-th region of n is equal to r. For the definition of "region of n" see A206437. %H A210971 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a> %e A210971 For n = 5 we have: %e A210971 ------------------------------------------------------ %e A210971 . Two arrangements Sum of %e A210971 k of the partitions of 5 partition k %e A210971 ------------------------------------------------------ %e A210971 7 [5] [5] 5 %e A210971 6 [3+2] [3+2] 5 %e A210971 5 [4+1] [4 +1] 5 %e A210971 4 [2+1+1] [2+2 +1] 5 %e A210971 3 [3+1+1] [3 +1 +1] 5 %e A210971 2 [2+1+1+1] [2+1 +1 +1] 5 %e A210971 1 [1+1+1+1+1] [1+1+1 +1 +1] 5 %e A210971 ------------------------------------------------------ %e A210971 . Two arrangements %e A210971 . of the region numbers Sum of %e A210971 k of the partitions of 5 zone k %e A210971 ------------------------------------------------------ %e A210971 7 [7] [7] 7 %e A210971 6 [6,7] [6,7] 13 %e A210971 5 [5,7] [5, 7] 12 %e A210971 4 [4,5,7] [4,5, 7] 16 %e A210971 3 [3,5,7] [3, 5, 7] 15 %e A210971 2 [2,3,5,7] [2,3, 5, 7] 17 %e A210971 1 [1,2,3,5,7] [1,2,3, 5, 7] 18 %e A210971 ------------------------------------------------------ %e A210971 So row 5 of triangle gives: 18, 17, 15, 16, 12, 13, 7. %e A210971 . %e A210971 Triangle begins: %e A210971 1; %e A210971 3,2; %e A210971 6,5,3; %e A210971 11,10,8,9,5; %e A210971 18,17,15,16,12,13,7; %e A210971 29,28,26,27,23,24,18,28,20,21,11; %Y A210971 Column 1 is A026905. Right border = row lengths = A000041, n>=1. Row sums give A210972. %Y A210971 Cf. A135010, A138121, A182703, A194446, A206437, A210969. %K A210971 nonn,tabf,more %O A210971 1,2 %A A210971 _Omar E. Pol_, Jun 30 2012