This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210975 #30 Oct 01 2022 14:11:54 %S A210975 7,2,3,6,0,1,2,5,4,5,5,8,2,6,7,6,5,9,3,6,3,0,1,4,6,2,7,2,9,0,7,9,5,7, %T A210975 6,7,8,7,2,1,0,8,8,9,4,7,8,4,5,4,5,9,2,6,9,7,6,2,1,2,3,2,7,7,7,0,3,6, %U A210975 8,2,0,5,2,8,6,2 %N A210975 Decimal expansion of square root of (Pi/6). %C A210975 Edge of a cube with surface area Pi. %H A210975 G. C. Greubel, <a href="/A210975/b210975.txt">Table of n, a(n) for n = 0..5000</a> %H A210975 I. S. Gradsteyn, I. M. Ryzhik, <a href="http://mathtable.com/gr/index.html">Table of integrals, series and products</a>, (1980), page 420 (formulas 3.757.1, 3.757.2). %H A210975 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A210975 Equals (Pi/6)^(1/2). %F A210975 Equals sqrt(A019673). %F A210975 From _A.H.M. Smeets_, Sep 22 2018: (Start) %F A210975 Equals Integral_{x >= 0} sin(3x)/sqrt(x) dx [Gradshteyn and Ryzhik]. %F A210975 Equals Integral_{x >= 0} cos(3x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End) %e A210975 0.723601254558267659363... %p A210975 sqrt(Pi/6) ; evalf(%) ; # _R. J. Mathar_, Sep 14 2012 %t A210975 RealDigits[Sqrt[Pi/6], 10, 50][[1]] (* _G. C. Greubel_, May 31 2017 *) %o A210975 (PARI) sqrt(Pi/6) \\ _Charles R Greathouse IV_, Apr 16 2014 %Y A210975 Cf. A019673. %K A210975 nonn,cons %O A210975 0,1 %A A210975 _Omar E. Pol_, Aug 09 2012