This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210979 #21 May 24 2012 09:48:31 %S A210979 0,3,8,15,27,42,69,102,155,225,327,458,652,894,1232,1669,2257,2999, %T A210979 3996,5242,6877,8928,11564,14845,19045,24223,30756,38815,48877,61195, %U A210979 76496,95124,118067,145930,179991,221160,271268,331538,404463,491948,597253 %N A210979 Total area of the shadows of the three views of the version "Tree" of the shell model of partitions with n shells. %C A210979 The physical model shows each part of a partition as an object, for example; a cube of side 1 which is labeled with the size of the part. Note that on the branches of the tree each column contains parts of the same size, as a periodic structure. For the large version of this model see A210980. %F A210979 a(n) = A006128(n) + A194803(n) + A194805(n). %e A210979 For n = 7 the three views of the shell model of partitions version "tree" with seven shells looks like this: %e A210979 . %e A210979 . A194805(7) = 25 A006128(7) = 54 %e A210979 . %e A210979 . 7 7 %e A210979 . 4 4 3 %e A210979 . 5 5 2 %e A210979 . 3 3 2 2 %e A210979 . 6 1 6 1 %e A210979 . 3 1 3 3 1 %e A210979 . 4 1 4 2 1 %e A210979 . 2 1 2 2 2 1 %e A210979 . 1 5 5 1 1 %e A210979 . 1 3 3 2 1 1 %e A210979 . 4 1 4 1 1 1 %e A210979 . 2 1 2 2 1 1 1 %e A210979 . 1 3 3 1 1 1 1 %e A210979 . 2 1 2 1 1 1 1 1 %e A210979 . 1 1 1 1 1 1 1 1 %e A210979 ------------------------------------------------- %e A210979 . %e A210979 . 6 3 4 2 1 3 5 4 7 %e A210979 . 3 2 2 1 2 2 3 %e A210979 . 2 1 2 %e A210979 . 1 %e A210979 . 1 %e A210979 . 1 %e A210979 . 1 %e A210979 . %e A210979 . A194803(7) = 23 %e A210979 . %e A210979 The areas of the shadows of the three views are A006128(7) = 54, A194803(7) = 23 and A194805(7) = 25, therefore the total area of the three shadows is 54+23+25 = 102, so a(7) = 102. %Y A210979 Other versions: A207380, A210970, A210980, A210990, A210991. %Y A210979 Cf. A006128, A135010, A138121, A182703, A194803, A194805. %K A210979 nonn %O A210979 0,2 %A A210979 _Omar E. Pol_, Apr 28 2012