This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210980 #15 May 23 2012 17:36:58 %S A210980 0,3,10,21,42,69,123,189,304,458,693,998,1474,2067,2927,4056,5613, %T A210980 7595,10335,13782,18411,24276,31944,41583,54152,69762,89758,114668, %U A210980 146181,185083,234051,294126,368992,460669,573906,711865,881506,1087023,1338043 %N A210980 Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells. %C A210980 Each part is represented by a cuboid 1 X 1 X L where L is the size of the part. %F A210980 a(n) = A066186(n) + A194804(n) + A194805(n), n >= 1. %e A210980 For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this: %e A210980 . | Partitions %e A210980 . A194805(7) = 25 A066186(7) = 105 | of 7 %e A210980 . | %e A210980 . 1 * * * * * * 1 | 7 %e A210980 . 2 * * * 1 * * 2 | 4+3 %e A210980 . 2 * * * * 1 * 2 | 5+2 %e A210980 . 3 * * 1 * 2 * 3 | 3+2+2 %e A210980 . 1 2 * * * * * 1 2 | 6+1 %e A210980 . 2 3 * * 1 * * 2 3 | 3+3+1 %e A210980 . 2 3 * * * 1 * 2 3 | 4+2+1 %e A210980 . 3 4 * 1 * 2 * 3 4 | 2+2+2+1 %e A210980 . 3 1 * * * * 1 2 3 | 5+1+1 %e A210980 . 4 2 * * 1 * 2 3 4 | 3+2+1+1 %e A210980 . 1 4 * * * 1 2 3 4 | 4+1+1+1 %e A210980 . 2 5 * 1 * 2 3 4 5 | 2+2+1+1+1 %e A210980 . 5 1 * * 1 2 3 4 5 | 3+1+1+1+1 %e A210980 . 1 6 * 1 2 3 4 5 6 | 2+1+1+1+1+1 %e A210980 . 7 1 2 3 4 5 6 7 | 1+1+1+1+1+1+1 %e A210980 . ---------------------------------- | %e A210980 . | %e A210980 . * * * * 1 * * * * | %e A210980 . * * * 1 2 * * * * | %e A210980 . * 1 * * 2 1 * * * | %e A210980 . * * 1 2 2 * * 1 * | %e A210980 . * * * * 2 2 1 * * | %e A210980 . 1 2 2 3 2 * * * * | %e A210980 . 2 3 2 2 1 | %e A210980 . | %e A210980 . A194804(7) = 59 | %e A210980 . %e A210980 Note that, as a variant, in this case each part is labeled with its position in the partition. %e A210980 The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189. %Y A210980 Other versions: A207380, A210970, A210979, A210990, A210991. %Y A210980 Cf. A000041, A066186, A135010, A138121, A141285, A182703, A194804, A194805, A206437. %K A210980 nonn %O A210980 0,2 %A A210980 _Omar E. Pol_, Apr 21 2012