cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210991 Total area of the shadows of the three views of the shell model of partitions with n regions.

This page as a plain text file.
%I A210991 #21 May 24 2012 13:07:10
%S A210991 0,3,9,18,21,35,39,58,61,67,71,99,103,110,115,152,155,161,165,175,181,
%T A210991 186,238,242,249,254,265,269,277,283,352,355,361,365,375,381,386,401,
%U A210991 406,415,422,428,522,526,533,538,549,553,561,567,584,590,595,606
%N A210991 Total area of the shadows of the three views of the shell model of partitions with n regions.
%C A210991 It appears that if n is a partition number A000041 then the rotated structure with n regions shows each row as a partition of k such that A000041(k) = n (see example).
%C A210991 For the definition of "regions of n" see A206437.
%F A210991 a(n) = A182181(n) + A182727(n) + A210692(n).
%F A210991 a(A000041(n)) = 2*A006128(n) + A026905(n).
%e A210991 For n = 11 the three views of the shell model of partitions with 11 regions look like this:
%e A210991 .
%e A210991 .     A182181(11) = 35           A210692(11) = 29
%e A210991 .
%e A210991 .   1                                       1
%e A210991 .   1                                       1
%e A210991 .   1                                       1
%e A210991 .   1                                       1
%e A210991 .   1       1                             1 1
%e A210991 .   1       1                             1 1
%e A210991 .   1       1   1                       1 1 1
%e A210991 .   2       1   1                       1 1 2
%e A210991 .   2       1   1   1                 1 1 1 2
%e A210991 .   3   2   2   2   1 1             1 1 2 2 3
%e A210991 .   6 3 4 2 5 3 4 2 3 2 1         1 2 3 4 5 6
%e A210991 . <------- Regions ------         ------------> N
%e A210991 .                            L
%e A210991 .                            a    1
%e A210991 .                            r    * 2
%e A210991 .                            g    * * 3
%e A210991 .                            e    * 2
%e A210991 .                            s    * * * 4
%e A210991 .                            t    * * 3
%e A210991 .                                 * * * * 5
%e A210991 .                            p    * 2
%e A210991 .                            a    * * * 4
%e A210991 .                            r    * * 3
%e A210991 .                            t    * * * * * 6
%e A210991 .                            s
%e A210991 .
%e A210991 .                                A182727(11) = 35
%e A210991 .
%e A210991 The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
%e A210991 Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
%e A210991 .
%e A210991 .                      6
%e A210991 .                    3   3
%e A210991 .                  4       2
%e A210991 .                2   2       2
%e A210991 .              5               1
%e A210991 .            3   2               1
%e A210991 .          4       1               1
%e A210991 .        2   2       1               1
%e A210991 .      3       1       1               1
%e A210991 .    2   1       1       1               1
%e A210991 .  1   1   1       1       1               1
%e A210991 .
%Y A210991 Other versions: A207380, A210970, A210979, A210980, A210990.
%Y A210991 Cf. A000041, A026905, A135010, A138121, A141285, A182703, A194446, A182181, A182727, A186114, A206437, A210692.
%K A210991 nonn
%O A210991 0,2
%A A210991 _Omar E. Pol_, Apr 30 2012