This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210992 #33 Mar 14 2015 11:43:30 %S A210992 1,2,1,3,1,1,4,2,1,1,5,3,1,1,1,6,4,2,1,1,1,7,5,2,1,1,1,1,8,6,3,2,1,1, %T A210992 1,1,9,7,4,2,1,1,1,1,1,10,8,5,2,2,1,1,1,1,1,11,9,6,3,2,1,1,1,1,1,1,12, %U A210992 10,7,4,2,2,1,1,1,1,1,1,13,11,8,4,2,2 %N A210992 Square array read by antidiagonals, in which column k starts with k plateaus of lengths k+1, k, k-1, k-2, k-3,..2 and of levels A000124: 1, 2, 4, 7, 11..., if k >= 1, connected by consecutive integers. After the last plateau the length remains 1. %C A210992 Column k contains k plateaus whose levels are the first k terms of A000124, therefore A000124(i) is the level of the i-th plateau of the column k when k -> infinity. %C A210992 Column k contains the integers s>=1 repeated f(s) times, sorted, where f(s)=1 if s is not in A000124, otherwise, if A000124(c)=s, repeated f(s)=max(1,k+1-c) times. - _R. J. Mathar_, Jul 22 2012 %C A210992 It appears that this array can be represented by a structure in which the number of relevant nodes give A000005 (see also A210959). - _Omar E. Pol_, Jul 24 2012 %H A210992 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/pol001plt.jpg">Illustration of initial terms of the columns 0..10</a> %e A210992 Illustration of initial terms of the 4th column: %e A210992 ------------------------------------------------------ %e A210992 Level Graphic %e A210992 ------------------------------------------------------ %e A210992 10 * %e A210992 9 * %e A210992 8 * %e A210992 7 * * %e A210992 6 * %e A210992 5 * %e A210992 4 * * * %e A210992 3 * %e A210992 2 * * * * %e A210992 1 * * * * * %e A210992 0 %e A210992 ------------------------------------------------------- %e A210992 Column 4: 1,1,1,1,1,2,2,2,2,3,4,4,4,5,6,7,7,8,9,10,... %e A210992 ------------------------------------------------------- %e A210992 Array begins: %e A210992 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,... %e A210992 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,... %e A210992 3, 2, 1, 1, 1, 1, 1, 1, 1, 1,... %e A210992 4, 3, 2, 1, 1, 1, 1, 1, 1, 1,... %e A210992 5, 4, 2, 2, 1, 1, 1, 1, 1, 1,... %e A210992 6, 5, 3, 2, 2, 1, 1, 1, 1, 1,... %e A210992 7, 6, 4, 2, 2, 2, 1, 1, 1, 1,... %e A210992 8, 7, 5, 3, 2, 2, 2, 1, 1, 1,... %e A210992 9, 8, 6, 4, 2, 2, 2, 2, 1, 1,... %p A210992 A000124i := proc(n) %p A210992 local j; %p A210992 for j from 0 do %p A210992 if A000124(j) = n then %p A210992 return j; %p A210992 elif A000124(j) > n then %p A210992 return -1 ; %p A210992 end if; %p A210992 end do: %p A210992 end proc: %p A210992 A210992 := proc(n,k) %p A210992 local f,r,a,c; %p A210992 f := k+1 ; %p A210992 a := 1 ; %p A210992 for r from 0 to n do %p A210992 if f > 0 then %p A210992 f := f-1; %p A210992 else %p A210992 a := a+1 ; %p A210992 c := A000124i(a) ; %p A210992 f := 0 ; %p A210992 if c >= 0 then %p A210992 f := max(0,k-c) ; %p A210992 end if; %p A210992 end if; %p A210992 end do: %p A210992 a ; %p A210992 end proc: # _R. J. Mathar_, Jul 22 2012 %Y A210992 Columns 0-1: A000027, A028310. %Y A210992 Cf. A000124, A195825, A210843, A210959, A211970. %K A210992 nonn,tabl %O A210992 0,2 %A A210992 _Omar E. Pol_, Jun 30 2012