cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210992 Square array read by antidiagonals, in which column k starts with k plateaus of lengths k+1, k, k-1, k-2, k-3,..2 and of levels A000124: 1, 2, 4, 7, 11..., if k >= 1, connected by consecutive integers. After the last plateau the length remains 1.

This page as a plain text file.
%I A210992 #33 Mar 14 2015 11:43:30
%S A210992 1,2,1,3,1,1,4,2,1,1,5,3,1,1,1,6,4,2,1,1,1,7,5,2,1,1,1,1,8,6,3,2,1,1,
%T A210992 1,1,9,7,4,2,1,1,1,1,1,10,8,5,2,2,1,1,1,1,1,11,9,6,3,2,1,1,1,1,1,1,12,
%U A210992 10,7,4,2,2,1,1,1,1,1,1,13,11,8,4,2,2
%N A210992 Square array read by antidiagonals, in which column k starts with k plateaus of lengths k+1, k, k-1, k-2, k-3,..2 and of levels A000124: 1, 2, 4, 7, 11..., if k >= 1, connected by consecutive integers. After the last plateau the length remains 1.
%C A210992 Column k contains k plateaus whose levels are the first k terms of A000124, therefore A000124(i) is the level of the i-th plateau of the column k when k -> infinity.
%C A210992 Column k contains the integers s>=1 repeated f(s) times, sorted, where f(s)=1 if s is not in A000124, otherwise, if A000124(c)=s, repeated f(s)=max(1,k+1-c) times. - _R. J. Mathar_, Jul 22 2012
%C A210992 It appears that this array can be represented by a structure in which the number of relevant nodes give A000005 (see also A210959). - _Omar E. Pol_, Jul 24 2012
%H A210992 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/pol001plt.jpg">Illustration of initial terms of the columns 0..10</a>
%e A210992 Illustration of initial terms of the 4th column:
%e A210992 ------------------------------------------------------
%e A210992 Level    Graphic
%e A210992 ------------------------------------------------------
%e A210992 10                                              *
%e A210992 9                                             *
%e A210992 8                                           *
%e A210992 7                                       * *
%e A210992 6                                     *
%e A210992 5                                   *
%e A210992 4                             * * *
%e A210992 3                           *
%e A210992 2                   * * * *
%e A210992 1         * * * * *
%e A210992 0
%e A210992 -------------------------------------------------------
%e A210992 Column 4: 1,1,1,1,1,2,2,2,2,3,4,4,4,5,6,7,7,8,9,10,...
%e A210992 -------------------------------------------------------
%e A210992 Array begins:
%e A210992 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
%e A210992 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
%e A210992 3, 2, 1, 1, 1, 1, 1, 1, 1, 1,...
%e A210992 4, 3, 2, 1, 1, 1, 1, 1, 1, 1,...
%e A210992 5, 4, 2, 2, 1, 1, 1, 1, 1, 1,...
%e A210992 6, 5, 3, 2, 2, 1, 1, 1, 1, 1,...
%e A210992 7, 6, 4, 2, 2, 2, 1, 1, 1, 1,...
%e A210992 8, 7, 5, 3, 2, 2, 2, 1, 1, 1,...
%e A210992 9, 8, 6, 4, 2, 2, 2, 2, 1, 1,...
%p A210992 A000124i := proc(n)
%p A210992     local j;
%p A210992     for j from 0 do
%p A210992         if A000124(j) = n then
%p A210992             return j;
%p A210992         elif A000124(j) > n then
%p A210992             return -1 ;
%p A210992         end if;
%p A210992     end do:
%p A210992 end proc:
%p A210992 A210992 := proc(n,k)
%p A210992     local f,r,a,c;
%p A210992     f := k+1  ;
%p A210992     a := 1 ;
%p A210992     for r from 0 to n do
%p A210992         if f > 0 then
%p A210992             f := f-1;
%p A210992         else
%p A210992             a := a+1 ;
%p A210992             c := A000124i(a) ;
%p A210992             f := 0 ;
%p A210992             if c >= 0 then
%p A210992                 f := max(0,k-c) ;
%p A210992             end if;
%p A210992         end if;
%p A210992     end do:
%p A210992     a ;
%p A210992 end proc: # _R. J. Mathar_, Jul 22 2012
%Y A210992 Columns 0-1: A000027, A028310.
%Y A210992 Cf. A000124, A195825, A210843, A210959, A211970.
%K A210992 nonn,tabl
%O A210992 0,2
%A A210992 _Omar E. Pol_, Jun 30 2012