This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211005 #36 Feb 10 2023 16:09:20 %S A211005 1,2,1,1,1,1,3,1,1,1,3,1,1,1,3,1,5,1,1,1,5,1,3,1,1,1,3,1,5,1,5,1,1,1, %T A211005 5,1,3,1,1,1,5,1,3,1,5,1,7,1,3,1,1,1,3,1,1,1,3,1,13,1,3,1,5,1,1,1,9,1, %U A211005 1,1,5,1,5,1,3,1,5,1,5,1,1,1,9,1,1,1 %N A211005 Pair (i, j) where i = number of adjacent nonprimes and j = number of adjacent primes. %C A211005 Also number of consecutive occurrences of n-1 in A069754. - _Reinhard Zumkeller_, Dec 04 2012 %C A211005 Run lengths of A010051. - _Paolo Xausa_, Jan 17 2023 %H A211005 Reinhard Zumkeller, <a href="/A211005/b211005.txt">Table of n, a(n) for n = 1..10000</a> %F A211005 a(n) = A162154(n-1), n >= 2. %e A211005 ---------------------------------------------------------- %e A211005 . Array from Number of Number of %e A211005 n A000027 nonprimes primes a(n) %e A211005 ---------------------------------------------------------- %e A211005 1 1; 1 0 1 %e A211005 2 2, 3; 0 2 2 %e A211005 3 4; 1 0 1 %e A211005 4 5; 0 1 1 %e A211005 5 6; 1 0 1 %e A211005 6 7; 0 1 1 %e A211005 7 8, 9, 10; 3 0 3 %e A211005 8 11; 0 1 1 %e A211005 9 12; 1 0 1 %e A211005 10 13; 0 1 1 %e A211005 11 14, 15, 16; 3 0 3 %e A211005 12 17; 0 1 1 %e A211005 13 18; 1 0 1 %e A211005 14 19; 0 1 1 %e A211005 15 20, 21, 22; 3 0 3 %e A211005 16 23; 0 1 1 %e A211005 17 24, 25, 26, 27, 28; 5 0 5 %e A211005 18 29; 0 1 1 %e A211005 19 30; 1 0 1 %e A211005 20 31; 0 1 1 %t A211005 A211005[upto_]:=Map[Length, Most[Split[PrimeQ[Range[upto]]]]]; %t A211005 A211005[500] (* _Paolo Xausa_, Jan 17 2023 *) %o A211005 (Haskell) %o A211005 import Data.List (group) %o A211005 a211005 n = a211005_list !! (n-1) %o A211005 a211005_list = map length $ group a069754_list %o A211005 -- _Reinhard Zumkeller_, Dec 04 2012 %Y A211005 1 together with A162154. %Y A211005 Cf. A000040, A001223, A010051, A018252, A046933, A211006, A211007. %K A211005 nonn %O A211005 1,2 %A A211005 _Omar E. Pol_, Aug 11 2012