cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211011 Value on the axis "y" of the endpoint of the structure (or curve) of A211000 at n-th stage.

This page as a plain text file.
%I A211011 #66 Jan 14 2023 22:00:10
%S A211011 0,1,0,-1,-2,-3,-4,-5,-6,-7,-6,-5,-4,-3,-2,-1,-2,-3,-4,-5,-6,-7,-6,-5,
%T A211011 -4,-3,-4,-5,-4,-3,-2,-1,0,1,0,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,0,
%U A211011 -1,0,1,2,3,2,1,2,3,4,5,6,7,6,5,6,7,8,9,8,7,6,5
%N A211011 Value on the axis "y" of the endpoint of the structure (or curve) of A211000 at n-th stage.
%C A211011 For n >= 13 the structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. Note that all odd numbers > 1 are located on the main axis of the structure. For the number of circles after n-th stage see A211020. For the values on the axis "x" see A211010. For the values for the n-th prime see A211023.
%H A211011 Paolo Xausa, <a href="/A211011/b211011.txt">Table of n, a(n) for n = 0..9999</a>
%H A211011 N. J. A. Sloane, <a href="http://oeis.org/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A211011 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%F A211011 abs(a(n)-a(n+1)) = 1.
%e A211011 Consider the illustration of the structure of A211000:
%e A211011 ------------------------------------------------------
%e A211011 .           After           After            After
%e A211011 .  y      9 stages        10 stages        11 stages
%e A211011 ------------------------------------------------------
%e A211011 .  2
%e A211011 .  1        1               1                1
%e A211011 .  0      0   2           0   2            0   2
%e A211011 . -1            3               3                3
%e A211011 . -2              4               4                4
%e A211011 . -3            5               5                5
%e A211011 . -4          6               6                6
%e A211011 . -5            7               7               11
%e A211011 . -6              8          10   8           10   8
%e A211011 . -7            9               9                9
%e A211011 . -8
%e A211011 We can see that a(7) = a(11) = -5.
%t A211011 A211011[nmax_]:=Module[{ep={0,0},angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];Last[ep=AngleVector[ep,{Sqrt[2],angle}]],{n,0,nmax-1}]]];
%t A211011 A211011[100] (* _Paolo Xausa_, Jan 14 2023 *)
%Y A211011 Bisection of A211000.
%Y A211011 Cf. A187210, A210838, A210841, A211001-A211003, A211010, A211020-A211024.
%K A211011 sign,look
%O A211011 0,5
%A A211011 _Omar E. Pol_, Mar 30 2012