This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211011 #66 Jan 14 2023 22:00:10 %S A211011 0,1,0,-1,-2,-3,-4,-5,-6,-7,-6,-5,-4,-3,-2,-1,-2,-3,-4,-5,-6,-7,-6,-5, %T A211011 -4,-3,-4,-5,-4,-3,-2,-1,0,1,0,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,0, %U A211011 -1,0,1,2,3,2,1,2,3,4,5,6,7,6,5,6,7,8,9,8,7,6,5 %N A211011 Value on the axis "y" of the endpoint of the structure (or curve) of A211000 at n-th stage. %C A211011 For n >= 13 the structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. Note that all odd numbers > 1 are located on the main axis of the structure. For the number of circles after n-th stage see A211020. For the values on the axis "x" see A211010. For the values for the n-th prime see A211023. %H A211011 Paolo Xausa, <a href="/A211011/b211011.txt">Table of n, a(n) for n = 0..9999</a> %H A211011 N. J. A. Sloane, <a href="http://oeis.org/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A211011 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A211011 abs(a(n)-a(n+1)) = 1. %e A211011 Consider the illustration of the structure of A211000: %e A211011 ------------------------------------------------------ %e A211011 . After After After %e A211011 . y 9 stages 10 stages 11 stages %e A211011 ------------------------------------------------------ %e A211011 . 2 %e A211011 . 1 1 1 1 %e A211011 . 0 0 2 0 2 0 2 %e A211011 . -1 3 3 3 %e A211011 . -2 4 4 4 %e A211011 . -3 5 5 5 %e A211011 . -4 6 6 6 %e A211011 . -5 7 7 11 %e A211011 . -6 8 10 8 10 8 %e A211011 . -7 9 9 9 %e A211011 . -8 %e A211011 We can see that a(7) = a(11) = -5. %t A211011 A211011[nmax_]:=Module[{ep={0,0},angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];Last[ep=AngleVector[ep,{Sqrt[2],angle}]],{n,0,nmax-1}]]]; %t A211011 A211011[100] (* _Paolo Xausa_, Jan 14 2023 *) %Y A211011 Bisection of A211000. %Y A211011 Cf. A187210, A210838, A210841, A211001-A211003, A211010, A211020-A211024. %K A211011 sign,look %O A211011 0,5 %A A211011 _Omar E. Pol_, Mar 30 2012