This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211024 #33 Jan 16 2023 15:45:47 %S A211024 0,1,3,6,10,15,21,28,36,45,55,59,71,79,93,105,117,121,133,141,153,165, %T A211024 177,181,193,201,209,213,217,221,237,253,285,318,350,354,358,362,400, %U A211024 439,479,483,491,499,527,543,559,563,575,583,591,595,599,603 %N A211024 Sum of all visible nodes in the structure of A211000 at n-th stage. %C A211024 First differs from A000217 at a(11). For n >= 13 the Q-toothpick structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. %H A211024 Paolo Xausa, <a href="/A211024/b211024.txt">Table of n, a(n) for n = 0..9999</a> (terms 0..4999 from Carole Dubois) %H A211024 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A211024 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %e A211024 Consider the illustration of the nodes in structure of A211000: %e A211024 ----------------------------------------------------- %e A211024 After 9 stages After 10 stages After 11 stages %e A211024 ----------------------------------------------------- %e A211024 . %e A211024 . 1 1 1 %e A211024 . 0 2 0 2 0 2 %e A211024 . 3 3 3 %e A211024 . 4 4 4 %e A211024 . 5 5 5 %e A211024 . 6 6 6 %e A211024 . 7 7 11 %e A211024 . 8 10 8 10 8 %e A211024 . 9 9 9 %e A211024 . %e A211024 ---------------------------------------------------- %e A211024 We can see that: %e A211024 a(9) = 0+1+2+3+4+5+6+7+8+9 = a(8)+9 = 45 %e A211024 a(10) = 0+1+2+3+4+5+6+7+8+9+10 = a(9)+10 = 55 %e A211024 a(11) = 0+1+2+3+4+5+6+8+9+10+11 = a(10)-7+11 = 59 %t A211024 A211024[nmax_]:=Module[{ep={0,0},node=Association[],angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];ep=AngleVector[ep,{Sqrt[2],angle}];node[ep]=n+1;Total[node],{n,0,nmax-1}]]]; %t A211024 A211024[100] (* _Paolo Xausa_, Jan 16 2023 *) %Y A211024 Cf. A000217, A187210, A211000-A211003, A211010, A211011, A211020-A211023. %K A211024 nonn %O A211024 0,3 %A A211024 _Omar E. Pol_, Apr 14 2012